Refinar búsqueda
Resultados 1-2 de 2
Arsenic Contamination in Rice, Wheat, Pulses, and Vegetables: A Study in an Arsenic Affected Area of West Bengal, India
2010
Bhattacharya, P. | Samal, A. C. | Majumdar, J. | Santra, S. C.
Ganga-Meghna-Bramhaputra basin is one of the major arsenic-contaminated hotspot in the world. To assess the level of severity of arsenic contamination, concentrations of arsenic in irrigation water, soil, rice, wheat, common vegetables, and pulses, intensively cultivated and consumed by the people of highly arsenic affected Nadia district, West Bengal, India, were investigated. Results revealed that the arsenic-contaminated irrigation water (0.318-0.643 mg l⁻¹) and soil (5.70-9.71 mg kg⁻¹) considerably influenced in the accumulation of arsenic in rice, pulses, and vegetables in the study area. Arsenic concentrations of irrigation water samples were many folds higher than the WHO recommended permissible limit for drinking water (0.01 mg l⁻¹) and FAO permissible limit for irrigation water (0.10 mg l⁻¹). But, the levels of arsenic in soil were lower than the reported global average of 10.0 mg kg⁻¹ and was much below the EU recommended maximum acceptable limit for agricultural soil (20.0 mg kg⁻¹). The total arsenic concentrations in the studied samples ranged from <0.0003 to 1.02 mg kg⁻¹. The highest and lowest mean arsenic concentrations (milligrams per kilogram) were found in potato (0.654) and in turmeric (0.003), respectively. Higher mean arsenic concentrations (milligrams per kilogram) were observed in Boro rice grain (0.451), arum (0.407), amaranth (0.372), radish (0.344), Aman rice grain (0.334), lady's finger (0.301), cauliflower (0.293), and Brinjal (0.279). Apart from a few potato samples, arsenic concentrations in the studied crop samples, including rice grain samples were found not to exceed the food hygiene concentration limit (1.0 mg kg⁻¹). Thus, the present study reveals that rice, wheat, vegetables, and pulses grown in the study area are safe for consumption, for now. But, the arsenic accumulation in the crops should be monitored periodically as the level of arsenic toxicity in the study area is increasing day by day.
Mostrar más [+] Menos [-]Nitrate in drinking water and vegetables: intake and risk assessment in rural and urban areas of Nagpur and Bhandara districts of India
2019
Taneja, Pinky | Labhasetwar, Pawan | Nagarnaik, Pranav
The study focuses on the estimation of health risk from nitrate present in the drinking water and vegetables in Nagpur and Bhandara districts in the state of Maharashtra, India. Drinking water samples from 77 locations from the rural as well as urban areas and 22 varieties of vegetable were collected and analyzed for the presence of nitrate for a period of 1 year (two seasons). The daily intake of nitrate from these water and vegetable samples was then computed and compared with standard acceptable intake levels to assess the associated health risk. The mean nitrate concentration of 59 drinking water samples exceeded the Bureau of Indian Standards limit of 45 mg/L in drinking water. The rural and urban areas were found to have mean nitrate concentration in drinking water as 45.69 ± 2.08 and 22.53 ± 1.97 mg/L, respectively. The estimated daily intake of drinking water samples from 55 study sites had nitrate concentration far below the safety margin indicating serious health risk. The sanitation survey conducted in 12 households reported contaminated source with positive E. coli count in 20 samples as the major factor of health risk. The average nitrate concentration was maximum in beetroot (1349.38 mg/kg) followed by spinach (1288.75 mg/kg) and amaranthus (1007.64 mg/kg). Among the samples, four varieties of the vegetables exceeded the acceptable daily intake (ADI) with an assumption of 0.5 kg consumption of vegetables for an average of a 60-kg individual. Therefore, irrigation of these locally grown vegetables should be monitored periodically for nitrogen accumulation by the crop above the ADI limit. The application of nitrogenous fertilizers should also be minimized in the rural areas to help protect the nitrate contamination in groundwater sources.
Mostrar más [+] Menos [-]