Refinar búsqueda
Resultados 1-10 de 924
Appraisal the Protective Effects of Cymbopogon Schoenanthus Extract against Reproductive Disorders and Carcinogenic Effects of Formalin in Experimental Male Rats
2020
Sief, M. M. | Sherif, S. M. | Abdel-Aziz, M. H. | Sherein, S. A. | Mona, M. A. | Ramzy, S.
Formaldehyde has been documented to be naturally present in many common foods. There has been a big public concern over the use of formaldehyde in the preservation of food. Also, it is commonly used as a chemical substance, usually in the life and can interact with many bio-substance in the human body. The present study target to investigate the protective effects of Cymbopogon schoenanthus (CS) extract against the reproductive and carcinogenic effects of formaldehyde on male rats. The Albino male rats were divided into equal six groups, first group: rendered as a control group; second group: received formalin (100 mg/kg bw) and third group and forth group: were received SC extract at (50 and 100 mg) respectively; fifth group and sixth group were received formalin (100mg /kg bw) + SC extract (50mg) and formalin (100mg /kg bw)+ SC extract (100 mg) respectively. At the end of the experiment the animals were scarified and blood samples were collected for measurement all tested parameters. The results showed that the oral exposure to formaldehyde at a dose of 100 mg/kg bw resulted in significant negative effects in all tested parameters, while the CS extract at tow doses (50 and 100 mg) alone or in combination with formalin restored the negative effects to normal levels compared with the untreated group. The histopathological examination was studied on testis tissues and the histopathological pictures showed the CS extract at tow mention doses had ameliorate the adverse effects that induced by formaldehyde hazards.
Mostrar más [+] Menos [-]PPARγ/LXRα axis mediated phenotypic plasticity of lung fibroblasts in silica-induced experimental silicosis
2022
Qi, Yuanmeng | Zhang, Haichen | Fan, Hui | Wang, Xinyu | Zhao, Ahui | Tian, Yangyang | Yang, Guo | Li, Chao | Wei, Jingjing | Yao, Wu | Hao, Changfu
Silicosis is a disease mainly caused by pulmonary interstitial fibrosis caused by long-term inhalation of dust with excessively high content of free SiO₂. Transdifferentiation of lung fibroblasts into myofibroblasts is an important cellular basis for silicosis, but the key transcription factors (TFs) involved in this process are still unclear. In order to explore the biological regulation of transcription factor PPARγ/LXRα in silica-induced pulmonary fibrosis, this study explored the molecular mechanism of PPARγ/LXRα involved in regulating transcription factors related to SiO₂-induced lung injury at the cellular level and in animal models. ChIP-qPCR detected that PPARγ directly regulated the transcriptional activity of the LXRα gene promoter, while the PPARγ agonist RSG increased the expression of LXRα. In addition, we demonstrated in the cell model that upregulation of LXRα can inhibit silica-mediated fibroblast transdifferentiation, accompanied by an increase in the expression of SREBF1, PLTP and ABCA1. The results of LXRα silencing experiment matched those of overexpression experiment. These studies explored the role of LXRα in plasticity and phenotypic transformation between lung fibroblasts and myofibroblasts. Therefore, inhibiting or reversing the transdifferentiation of lung fibroblasts to myofibroblasts by intervening PPARγ/LXRα may provide a new therapeutic target for the treatment of silicosis.
Mostrar más [+] Menos [-]Bioaccumulation potential of chlorpyrifos in resistant Hyalella azteca: Implications for evolutionary toxicology
2021
Johanif, Nadhirah | Huff Hartz, Kara E. | Figueroa, Alexandra E. | Weston, Donald P. | Lee, Devon | Lydy, Michael J. | Connon, Richard E. | Poynton, Helen C.
Given extensive use of pesticides in agriculture, there is concern for unintended consequences to non-target species. The non-target freshwater amphipod, Hyalella azteca has been found to show resistance to the organophosphate (OP) pesticide, chlorpyrifos, resulting from an amino acid substitution in acetylcholinesterase (AChE), suggesting a selective pressure of unintended pesticide exposure. Since resistant organisms can survive in contaminated habitats, there is potential for them to accumulate higher concentrations of insecticides, increasing the risk for trophic transfer. In the present study, we estimated the uptake and elimination of chlorpyrifos in non-resistant US Lab, and resistant Ulatis Creek (ULC Resistant), H. azteca populations by conducting 24-h uptake and 48-h elimination toxicokinetic experiments with ¹⁴C-chlorpyrifos. Our results indicated that non-resistant H. azteca had a larger uptake clearance coefficient (1467 mL g⁻¹ h⁻¹) than resistant animals (557 mL g⁻¹ h⁻¹). The half-life derived from the toxicokinetic models also estimated that steady state conditions were reached at 13.5 and 32.5 h for US Lab and ULC, respectively. Bioaccumulation was compared between non-resistant and resistant H. azteca by exposing animals to six different environmentally relevant concentrations for 28 h. Detection of chlorpyrifos in animal tissues indicated that resistant animals exposed to high concentrations of chlorpyrifos were capable of accumulating the insecticide up to 10-fold higher compared to non-resistant animals. Metabolite analysis from the 28-h concentration experiments showed that between 20 and 50 % parent compound was detected in H. azteca. These results imply that bioaccumulation potential can be more significant in chlorpyrifos resistant H. azteca and may be an essential factor in assessing the full impacts of toxicants on critical food webs, especially in the face of increasing pesticide and chemical runoff.
Mostrar más [+] Menos [-]Association of exposures to perchlorate, nitrate, and thiocyanate with allergic symptoms: A population-based nationwide cohort study
2021
Zhu, Fanghuan | Jiao, Jingjing | Zhuang, Pan | Huang, Mengmeng | Zhang, Yu
Allergic diseases have been one of the leading causes of chronic disorders in the United States. Animal studies have suggested that exposures to perchlorate, nitrate, and thiocyanate could induce allergic inflammation. However, the associations have not been examined among general populations. Here, we investigated data of 7030 participants aged ≥6 years from the National Health and Nutritional Examination Survey (NHANES) 2005–2006. Urinary levels of perchlorate, nitrate, and thiocyanate were measured by ion chromatography combined with electrospray tandem mass spectrometry. Information on allergic symptoms (hay fever, allergy, rash, sneeze, wheeze, eczema, and current asthma) was collected by questionnaire. Allergic sensitization was defined by a concentration ≥150 kU/L for total immunoglobulin E (IgE) levels. The associations were estimated using multivariate-adjusted logistic regression models. A positive association was observed for urinary nitrate and eczema (p < 0.001 for the trend). Compared with quartile 1 (lowest quartile), the odds ratios of eczema with 95% confidence intervals [ORs (95% CIs)] from quartiles 2 to 4 were 1.72 (95% CI, 1.41, 2.09), 1.94 (1.53, 2.47) and 2.10 (1.49, 2.97) for urinary nitrate. In addition, urinary thiocyanate was positively related to sneeze (ORQ₄ ᵥₛ. Q₁: 1.25, 95% CI: 1.01, 1.55; p = 0.015 for the trend). However, urinary perchlorate was not correlated with any allergic-related outcome. Additionally, the associations were different among subgroups in a four-level polytomous model. Thus, our results suggested that exposures to nitrate and thiocyanate may be associated with allergic symptoms. Further investigations are warranted to concentrate on the practical strategies to monitor exposure levels and the latent mechanisms of the relationship between exposure and allergy.
Mostrar más [+] Menos [-]Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver
2020
Jiao, Yaqi | Tao, Yue | Yang, Yang | Diogene, Tuyiringire | Yu, Hui | He, Ziqing | Han, Wei | Chen, Zhaobo | Wu, Pan | Zhang, Ying
In this paper, the acute toxicity of monobutyl phthalate (MBP), the main hydrolysis product of dibutyl phthalate, on adult zebrafish liver antioxidant system was studied. Compared the toxicity effect of MBP and DBP by histopathology and apoptosis experiments, we speculated that the toxic effects of DBP on animals may be caused by its metabolite MBP. The results indicated that the antioxidant Nrf2-Keap1 pathway was insufficient to resist MBP-induced hepatotoxicity and led to an imbalance of membrane ion homeostasis and liver damage. Decreased cell viability, significant tissue lesions and early hepatocyte apoptosis were observed in the zebrafish liver in MBP exposure at high concentration (10 mg/L). The activities of antioxidant enzymes and ATPases in zebrafish liver were inhibited with increased malondialdehyde (MDA) content and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Integrated biomarker response (IBR) calculation results indicated that MBP mainly inhibited catalase (CAT) activity. Simultaneously, the expression of antioxidant-related genes (SOD, CAT, GPx, Nrf2, HO-1) was down-regulated, while apoptosis-related genes (p53, bax, cas3) were significantly up-regulated.
Mostrar más [+] Menos [-]Aquatic vascular plants – A forgotten piece of nature in microplastic research
2020
Kalčíková, Gabriela
Research on the interaction of microplastics and aquatic organisms has been mainly focused on the evaluation of various impacts on animals while aquatic vascular plants have been so far understudied. In this commentary, we summarized knowledge about interactions of microplastics with aquatic vascular plants and highlighted potential ecological implications. Based on recent research, microplastics have minimal impacts on plants. However, they are strongly attracted to plant tissues, adsorbed, and accumulated by plants. Several mechanisms drive microplastics adsorption and accumulation; the most possibly electrostatic forces, leaf morphology, and presence of periphyton belong among the most important ones. Adsorbed microplastics on plant tissues are easily ingested by herbivores. Plants can thus represent a viable pathway for microplastics to enter aquatic food webs. On the other hand, the strong interactions of microplastics with plants could be used for their phytostabilization and final removal from the environment. Aquatic vascular plants have thus an important role in the behavior and fate of microplastics in aquatic ecosystems, and therefore, they should also be included in the future microplastic research.
Mostrar más [+] Menos [-]Microplastic fibers transfer from the water to the internal fluid of the sea cucumber Apostichopus japonicus
2020
Mohsen, Mohamed | Zhang, Libin | Sun, Lina | Lin, Chenggang | Wang, Qing | Yang, Hongsheng
Microplastics (MPs) are small plastic particles less than 5 mm in diameter. MPs in the form of microfibers (MFs) are widely detected in aquatic habitats and are of high environmental concern. Despite many reports on the effects of MFs on marine animals, their effect on sea cucumbers is still unclear. In addition, our previous filed study has shown that MFs may transfer to the coelomic fluid of the sea cucumber Apostichopus japonicus (A. japonicus). Here, we show how MFs transfer to the coelomic fluid of the sea cucumber. We captured the MFs during their transfer from the water to the coelomic fluid through the respiratory tree. A. japonicus ingested in the MFs along with the water during respiration; the MFs got stuck in the respiratory tree or transferred to the coelomic fluid. The transferred MFs increased during 72 h of exposure and persisted for 72 h after the transfer to clean water. Among the immunity indices, lysozyme (LZM) levels increased in response to the transferred MFs, which confirms the defensive role of LZMs against strange substances. Additionally, non-significantly decreased levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), peroxidase (POD) and phenol oxidase (PPO) were observed at 24 h and 48 h post-exposure, suggesting minimal oxidative imbalance. Furthermore, there were no significant changes in the speed and the total distance moved by A. japonicus post MFs transfer. This study revealed that MFs transfer and accumulate in the coelomic fluid of A. japonicus.
Mostrar más [+] Menos [-]Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium
2020
Zhou, Chuanqi | Huang, Jung-Chen | Zheng, Lixin | He, Shengbing | Zhou, Weili
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9–74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3–100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40–87.24 μg Cr/g DW) or adults (19.41–50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7–94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1–1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
Mostrar más [+] Menos [-]Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study
2020
Li, Simin | Zhu, Li | Li, Jin | Ke, Xin | Wu, Longhua | Luo, Yongming | Christie, Peter
Amendment with sewage sludge or biosolids can increase soil fertility but may also transfer biosolid-borne pollutants to the soil and the possible effects on the soil ecosystem are poorly understood, especially long-term effects. A long-term experiment was therefore established to assess the effects of repeated applications of different types of biosolids (fresh domestic, dried domestic and fresh industrial sludges) in field conditions. Nine years of sludge application led to changes in soil chemical and biological properties and generally contributed little to soil nutrient status. However, soil concentrations of potentially toxic elements (PTEs) were elevated by amendment, especially with industrial biosolids. Soil fauna are usually used to decipher the underlying effects of biosolid applications on the soil ecosystem. Here, collembolans (50.9%), nematodes (41.6%) and enchytraeid worms (7.50%) were collected and differentiated into different ecological and trophic groups and their body lengths and PTE concentrations in the body tissues were investigated. The animals showed different responses to the biosolids at population and individual levels. There were substantial changes in epigeic collembolan communities and bacterivorous nematodes increased significantly after biosolid amendment. Biosolid-borne PTEs were major factors and Redundancy (RDA) analysis indicates that collembolan communities were strongly influenced by zinc (Zn). The three groups of soil animals showed similar trends in accumulation of PTEs in the sequence cadmium (Cd) > Zn > copper (Cu), and the bioaccumulation factor (BAF) values of the PTEs were significantly higher in the industrial sludge treatment than in other two treatments with a similar trend of decreasing body length of nematodes. The results indicate that it is potentially risky to use industrial biosolids in the long term, and different species and ecological groups of collembolans and different trophic groups of nematodes should be examined when assessing soil health.
Mostrar más [+] Menos [-]Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans
2020
Shao, Huimin | Wang, Dayong
Functional state of intestinal barrier plays an important role for environmental animals in being against various toxicants. We investigated GATA transcriptional factor ELT-2-mediated intestinal response to nanopolystyrere in Caenorhabditis elegans. Prolonged exposure to nanopolystyrene (≥1 μg/L) induced an increase in expression of ELT-2, and intestinal RNA interference (RNAi) knockdown of elt-2 caused enhancement in intestinal permeability. Meanwhile, mutation of elt-2 resulted in susceptibility to nanopolystyrene toxicity, and ELT-2 functioned in intestine to regulate the nanopolystyrene toxicity. ERM-1, CLEC-63, and CLEC-85 were identified as targets of ELT-2 in regulating the nanopolystyrene toxicity. ERM-1 was required for maintaining functional state in intestinal barrier, and functioned synergistically with CLEC-63 or CLEC-85 to regulate nanopolystyrene toxicity. Therefore, activation of intestinal ELT-2 by nanopolystyrere could mediate a protective strategy to maintain the functional state of intestinal barrier. During this process, intestinal ELT-2 activated two different molecular signals (ERM-1 signal and CLEC-63/85 signal) for nematodes against the nanopolystyrene toxicity.
Mostrar más [+] Menos [-]