Refinar búsqueda
Resultados 1-10 de 126
Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
Mostrar más [+] Menos [-]Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P.niruri contrived antibacterial iron oxide nanoparticles with zebrafish
2020
Sheel, Rishav | Kumari, Puja | Panda, Pritam Kumar | Jawed Ansari, Md Danish | Patel, Paritosh | Singh, Sonal | Kumari, Baby | Sarkar, Biplab | Mallick, M Anwar | Verma, Suresh K.
Extensive use of magnetic iron oxide (magnetite) nanoparticles (IONP) has raised concerns about their biocompatibility. It has also stimulated the search for its green synthesis with greater biocompatibility. Addressing the issue, this study investigates the molecular nanotoxicity of IONP with embryonic and adult zebrafish, and reveal novel green fabrication of iron oxide nanoparticles (P-IONP) using medicinal plant extract of Phyllanthus niruri. The synthesized P-IONP was having a size of 42 ± 08 nm and a zeta potential of −38 ± 06 mV with hydrodynamic diameter of 109 ± 09 nm and 90emu/g magnetic saturation value. High antibacterial efficacy of P-IONP was found against E.coli. Comparative in vivo biocompatibility assessment with zebrafish confirmed higher biocompatibility of P-IONP compared to commercial C-IONP in the relevance of mortality rate, hatching rate, heart rate, and morphological abnormalities. LC₅₀ of P-IONP and C-IONP was 202 μg/ml and 126 μg/ml, respectively. Molecular nano-biocompatibility analysis revealed the phenomenon as an effect of induced apoptosis lead by dysregulation of induced oxidative stress due to structural and functional influence of IONP to Sod1 and Tp53 proteins through intrinsic atomic interaction.
Mostrar más [+] Menos [-]Uptake and metabolism of clarithromycin and sulfadiazine in lettuce
2019
Tian, Run | Zhang, Rong | Uddin, Misbah | Qiao, Xianliang | Chen, Jingwen | Gu, Gege
Antibiotics are introduced into agricultural fields by the application of manure or biosolids, or via irrigation using reclaimed wastewater. Antibiotics can enter the terrestrial food chains through plant uptake, which forms an alternative pathway for human exposure to antibiotics. However, previous studies mainly focused on detecting residues of the parent antibiotics, while ignoring the identification of antibiotics transformation products in plants. Here, we evaluated the uptake and metabolism of clarithromycin (CLA) and sulfadiazine (SDZ) in lettuce under controlled hydroponic conditions. The antibiotics and their metabolites were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS/MS) and ultra-performance liquid chromatograph Micromass triple quadrupole mass spectrometry (UPLC−QqQ−MS/MS). The structure of CLA, SDZ and N-acetylated SDZ were confirmed with synthesized standards, verifying the reliability of the identification method. Eight metabolites of CLA and two metabolites of SDZ were detected in both the leaves and roots of lettuce. The metabolites of CLA included phases I and II transformation products, while only phase II metabolites of SDZ were observed in lettuce. The proportion of CLA metabolites was estimated to be greater than 70%, indicating that most of the CLA was metabolized in plant tissues. The proportion of SDZ metabolites was lower than 12% in the leaves and 10% in the roots. Some metabolites might have the ability to increase or acquire antibacterial activity. Therefore, in addition to the parent compounds, metabolites of antibiotics in edible vegetables are also worthy of study for risk assessment and to determine the consequences of long-term exposure.
Mostrar más [+] Menos [-]Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions
2018
Huang, Jing | Huang, Guohe | An, Chunjiang | He, Yuan | Yao, Yao | Zhang, Peng | Shen, Jian
Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions.
Mostrar más [+] Menos [-]Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation
2017
Shang, Enxiang | Niu, Junfeng | Li, Yang | Zhou, Yijing | Crittenden, John Charles
In this study, the phototoxicity of cadmium sulfide (CdS), molybdenum disulfide (MoS2), and tungsten disulfide (WS2) nanoparticles (NPs) toward Escherichia coli (E. coli) under UV irradiation (365 nm) was investigated. At the same mass concentration of NPs, the toxicity of three NPs decreased in the order of CdS > MoS2 > WS2. For example, the death rates of E. coli exposed to 50 mg/L CdS, MoS2, and WS2 were 96.7%, 38.5%, and 31.2%, respectively. Transmission electron microscope and laser scanning confocal microscope images of E. coli exposed to three NPs showed the damage of cell walls and release of intracellular components. The CdS-treated cell wall was more extensively damaged than those of MoS2-treated and WS2-treated bacteria. WS2 and MoS2 generated superoxide radical (O2⁻), singlet oxygen (¹O2), and hydroxyl radical under UV irradiation, CdS produced only O2⁻ and ¹O2. CdS and WS2 released ions under UV irradiation, while MoS2 did not. Reactive oxygen species (ROS) generation and toxic ion release jointly resulted in the antibacterial activities of CdS and WS2. ROS generation was the dominant toxic mechanism of MoS2 toward the bacteria. This study highlighted the importance of considering the hazardous effect of sulfide NPs after their release into natural waters under light irradiation condition.
Mostrar más [+] Menos [-]Mechanism of enhanced antibacterial activity of ultra-fine ZnO in phosphate buffer solution with various organic acids
2016
Yang, Lin | Kuang, Huijuan | Liu, Yingxia | Xu, Hengyi | Aguilar, Zoraida P. | Xiong, Yonghua | Wei, Hua
Ultra-fine-ZnO showed low toxicity in complex water matrix containing multiple components such as PBS buffer and the toxic mechanism of ultra-fine-ZnO has not been clearly elucidated. In present study, enhanced antibacterial activity of 200 nm diameter ultra-fine-ZnO in PBS buffer against Bacillus cereus and Escherichia coli were observed in the presence of several organic acids in comparison with ultra-fine-ZnO in PBS buffer alone. These findings indicated that the toxic effects of the ultra-fine-ZnO was dependent on the concentration of released Zn2+ which was affected by organic acids. The production of reactive oxygen species (ROS) did not responsible to the toxic mechanism of ultra-fine-ZnO which was tested using the antioxidant N-Acetylcysteine (NAC). Indeed, ultra-fine-ZnO induced bacteria cell membrane leakages and cell morphology damages that eventually led to cell death, which were confirmed using propidium monoazide (PMA) in combination with PCR and scanning electron microscopy (SEM). All data gathered herein suggested that released Zn2+ played a major role in the microbial toxicity of ultra-fine-ZnO.
Mostrar más [+] Menos [-]Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives
2022
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Mostrar más [+] Menos [-]Superior disinfection effect of Escherichia coli by hydrothermal synthesized TiO2-based composite photocatalyst under LED irradiation: Influence of environmental factors and disinfection mechanism
2019
Liu, Na | Zhu, Qi | Zhang, Nan | Zhang, Cheng | Kawazoe, Naoki | Chen, Guoping | Negishi, Nobuaki | Yang, Yingnan
The photocatalytic inactivation of Escherichia coli (E. coli) under light-emitting diode (LED) light irradiation was performed with P/Ag/Ag₂O/Ag₃PO₄/TiO₂ photocatalyst to investigate the photocatalytic bactericidal activity. Our work showed that this composite photocatalyst possessed remarkable bacterial disinfection ability and could completely inactivate 10⁸ cfu/mL of E. coli within just 40 min under the optimum catalyst loading of 0.5 g/L. The effects of different environmental factors, including light wavelength, light intensity, temperature, solution pH and inorganic ions, on the inactivation efficiency were evaluated. The results showed that bacteria inactivation by P/Ag/Ag₂O/Ag₃PO₄/TiO₂ was more favorable with blue colored LED irradiation, light intensity at 750 W/m², temperature in the range of 30–37 °C and pH values at natural or slightly alkaline condition. The existence of different inorganic ions under normal environmental level had no significant impact on the bactericidal performance. In addition, during the inactivation process, the morphology changes of E. coli cells were directly observed by scanning electron microscope (SEM) and further proved by the measurement of K⁺ leakage from the inactivated E. coli. The results demonstrated that the photocatalytic inactivation caused drastic damage on bacterial cells membrane. Furthermore, the mechanisms of photocatalytic bacterial inactivation were also systemically studied and the results confirmed that the excellent disinfection activity of P/Ag/Ag₂O/Ag₃PO₄/TiO₂ resulted from the major reactive species: h⁺ and ·O₂⁻ from photocatalytic process instead of the leakage of Ag⁺ (≤0.085 ± 0.005 mg/L) from photocatalyst. These results indicate that P/Ag/Ag₂O/Ag₃PO₄/TiO₂ photocatalyst has promising potential for real water sterilization application.
Mostrar más [+] Menos [-]Antibacterial activity of oxytetracycline photoproducts in marine aquaculture's water
2017
Leal, J.F. | Henriques, I.S. | Correia, A. | Santos, E.B.H. | Esteves, V.I.
Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. The main concern related to its use is the bacterial resistance, when ineffective treatments are applied for its removal or inactivation. OTC photo-degradation has been suggested as an efficient complementary process to conventional methods used in intensive fish production (e.g.: ozonation). Despite this, and knowing that the complete mineralization of OTC is difficult, few studies have examined the antibacterial activity of OTC photoproducts. Thus, the main aim of this work is to assess whether the OTC photoproducts retain the antibacterial activity of its parent compound (OTC) after its irradiation, using simulated sunlight. For that, three Gram-negative bacteria (Escherichia coli, Vibrio sp. and Aeromonas sp.) and different synthetic and natural aqueous matrices (phosphate buffered solutions at different salinities, 0 and 21‰, and three different samples from marine aquaculture industries) were tested. The microbiological assays were made using the well-diffusion method before and after OTC has been exposed to sunlight. The results revealed a clear effect of simulated sunlight, resulting on the decrease or elimination of the antibacterial activity for all strains and in all aqueous matrices due to OTC photo-degradation. For E. coli, it was also observed that the antibacterial activity of OTC is lower in the presence of sea-salts, as demonstrated by comparison of halos in aqueous matrices containing or not sea-salts.
Mostrar más [+] Menos [-]Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death
2016
Liu, Gesheng | Zhang, Shuai | Yang, Kun | Zhu, Lizhong | Lin, Daohui
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L−1, respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs.
Mostrar más [+] Menos [-]