Refinar búsqueda
Resultados 1-10 de 35
Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality.
1993
Clarke G.M.
Physiological plasticity and acclimatory responses to salinity stress are ion-specific in the mayfly, Neocloeon triangulifer Texto completo
2021
Orr, Sarah E. | Negrão Watanabe, Tatiane Terumi | Buchwalter, David B.
Freshwater salinization is a rapidly emerging ecological issue and is correlated with significant declines in aquatic biodiversity. It remains unclear how changing salinity regimes affect the physiology of sensitive aquatic insects. We used the parthenogenetic mayfly, Neocloeon triangulifer, to ask how ionic exposure history alters physiological processes and responses to subsequent major ion exposures. Using radiotracers (²²Na, ³⁵SO₄, and ⁴⁵Ca), we observed that mayflies chronically reared in elevated sodium or sulfate (157 mg L⁻¹ Na or 667 mg L⁻¹ SO₄) had 2-fold (p < 0.0001) and 8-fold (p < 0.0001) lower ion uptake rates than mayflies reared in dilute control water (16 mg L⁻¹ Na and 23 mg L⁻¹ SO₄) and subsequently transferred to elevated salinities, respectively. These acclimatory ion transport changes provided protection in 96-h toxicity bioassays for sodium, but not sulfate. Interestingly, calcium uptake was uniformly much lower and minimally influenced by exposure history, but was poorly tolerated in the toxicity bioassays. With qRT-PCR, we observed that the expression of many ion transporter genes in mayflies was influenced by elevated salinity in an ion-specific manner (general upregulation in response to sulfate, downregulation in response to calcium). Elevated sodium exposure had minimal influence on the same genes. Finally, we provide novel light microscopic evidence of histomorphological changes within the epithelium of the Malpighian tubules (insect primary excretory system) that undergoes cellular degeneration and necrosis secondary to calcium toxicity. We conclude that physiological plasticity to salinity stress is ion-specific and provide evidence for ion-specific toxicity mechanisms in N. triangulifer.
Mostrar más [+] Menos [-]Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect, Chironomus dilutus Texto completo
2020
Wei, Fenghua | Wang, Dali | Li, Huizhen | Xia, Pu | Ran, Yong | Yau, Ching
Neonicotinoid insecticides have posed a great threat to non-target organisms, yet the mechanisms underlying their toxicity are not well characterized. Major modes of action (MoAs) of imidacloprid were analyzed in an aquatic insect Chironomus dilutus. Lethal and sublethal outcomes were assessed in the midges after 96-h exposure to imidacloprid. Global transcriptomic profiles were determined using de novo RNA-sequencing to more holistically identify toxicity pathways. Transcriptional 10% biological potency values derived from ranked KEGG pathways and GO terms were 0.02 (0.01–0.08) (mean (95% confidence interval) and 0.05 (0.04–0.06) μg L⁻¹, respectively, which were more sensitive than those from phenotypic traits (10% lethal concentration: 0.44 (0.23–0.79) μg L⁻¹; 10% burrowing behavior concentration: 0.30 (0.22–0.43) μg L⁻¹). Major MoAs of imidacloprid in aquatic species were identified as follows: the activation of nicotinic acetylcholine receptors (nAChRs) induced by imidacloprid impaired organisms’ nerve system through calcium ion homeostasis imbalance and mitochondrial dysfunction, which posed oxidative stress and DNA damage and eventually caused death of organisms. The current investigation highlighted that imidacloprid affected C. dilutus at environmentally relevant concentrations, and elucidated toxicity pathways derived from gene alteration to individual outcomes, calling for more attention to toxicity of neonicotinoids to aquatic organisms.
Mostrar más [+] Menos [-]Lethal and sublethal toxicity of neonicotinoid and butenolide insecticides to the mayfly, Hexagenia spp Texto completo
2018
Bartlett, Adrienne J. | Hedges, Amanda M. | Intini, Kyna D. | Brown, Lisa R. | Maisonneuve, France J. | Robinson, Stacey A. | Gillis, Patricia L. | de Solla, Shane R.
Neonicotinoid insecticides are environmentally persistent and highly water-soluble, and thus are prone to leaching into surface waters where they may negatively affect non-target aquatic insects. Most of the research to date has focused on imidacloprid, and few data are available regarding the effects of other neonicotinoids or their proposed replacements (butenolide insecticides). The objective of this study was to assess the toxicity of six neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, clothianidin, thiacloprid, and dinotefuran) and one butenolide (flupyradifurone) to Hexagenia spp. (mayfly larvae). Acute (96-h), water-only tests were conducted, and survival and behaviour (number of surviving mayflies inhabiting artificial burrows) were assessed. Acute sublethal tests were also conducted with imidacloprid, acetamiprid, and thiacloprid, and in addition to survival and behaviour, mobility (ability to burrow into sediment) and recovery (survival and growth following 21 d in clean sediment) were measured. Sublethal effects occurred at much lower concentrations than survival: 96-h LC50s ranged from 780 μg/L (acetamiprid) to >10,000 μg/L (dinotefuran), whereas 96-h EC50s ranged from 4.0 μg/L (acetamiprid) to 630 μg/L (thiamethoxam). Flupyradifurone was intermediate in toxicity, with a 96-h LC50 of 2000 μg/L and a 96-h EC50 of 81 μg/L. Behaviour and mobility were impaired significantly and to a similar degree in sublethal exposures to 10 μg/L imidacloprid, acetamiprid, and thiacloprid, and survival and growth following the recovery period were significantly lower in mayflies exposed to 10 μg/L acetamiprid and thiacloprid, respectively. A suite of effects on mayfly swimming behaviour/ability and respiration were also observed, but not quantified, following exposures to imidacloprid, acetamiprid, and thiacloprid at 1 μg/L and higher. Imidacloprid concentrations measured in North American surface waters have been found to meet or exceed those causing toxicity to Hexagenia, indicating that environmental concentrations may adversely affect Hexagenia and similarly sensitive non-target aquatic species.
Mostrar más [+] Menos [-]Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect Texto completo
2017
Op de Beeck, Lin | Verheyen, Julie | Stoks, Robby
Global warming and chemical pollution are key anthropogenic stressors with the potential to interact. While warming can change the impact of pollutants and pollutants can change the sensitivity to warming, both interaction pathways have never been integrated in a single experiment. Therefore, we tested the effects of warming and multiple pesticide pulses (allowing accumulation) of chlorpyrifos on upper thermal tolerance (CTmax) and associated physiological traits related to aerobic/anaerobic energy production in the damselfly Ischnura elegans. To also assess the role of latitude-specific thermal adaptation in shaping the impact of warming and pesticide exposure on thermal tolerance, we exposed larvae from replicated high- and low-latitude populations to the pesticide in a common garden rearing experiment at 20 and 24 °C, the mean summer water temperatures at high and low latitudes. As expected, exposure to chlorpyrifos resulted in a lower CTmax. Yet, this pesticide effect on CTmax was lower at 24 °C compared to 20 °C because of a lower accumulation of chlorpyrifos in the medium at 24 °C. The effects on CTmax could partly be explained by reduction of the aerobic scope. Given that these effects did not differ between latitudes, gradual thermal evolution is not expected to counteract the negative effect of the pesticide on thermal tolerance. By for the first time integrating both interaction pathways we were not only able to provide support for both of them, but more importantly demonstrate that they can directly affect each other. Indeed, the warming-induced reduction in pesticide impact generated a lower pesticide-induced climate change sensitivity (in terms of decreased upper thermal tolerance). Our results indicate that, assuming no increase in pesticide input, global warming might reduce the negative effect of multiple pulse exposures to pesticides on sensitivity to elevated temperatures.
Mostrar más [+] Menos [-]Sensitivity of the early-life stages of freshwater mollusks to neonicotinoid and butenolide insecticides Texto completo
2016
Prosser, R.S. | de Solla, S.R. | Holman, E.A.M. | Osborne, R. | Robinson, S.A. | Bartlett, A.J. | Maisonneuve, F.J. | Gillis, P.L.
Neonicotinoid insecticides can be transported from agricultural fields, where they are used as foliar sprays or seed treatments, to surface waters by surface or sub-surface runoff. Few studies have investigated the toxicity of neonicotinoid or the related butenolide insecticides to freshwater mollusk species. The current study examined the effect of neonicotinoid and butenolide exposures to the early-life stages of the ramshorn snail, Planorbella pilsbryi, and the wavy-rayed lampmussel, Lampsilis fasciola. Juvenile P. pilsbryi were exposed to imidacloprid, clothianidin, or thiamethoxam for 7 or 28 d and mortality, growth, and biomass production were measured. The viability of larval (glochidia) L. fasciola was monitored during a 48 h exposure to six neonicotinoids (imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, or dinotefuran), or a butenolide (flupyradifurone). The 7-d LC50s of P. pilsbryi for imidacloprid, clothianidin, and thiamethoxam were ≥4000 μg/L and the 28-d LC50s were ≥182 μg/L. Growth and biomass production were considerably more sensitive endpoints than mortality with EC50s ranging from 33.2 to 122.0 μg/L. The 48-h LC50s for the viability of glochidia were ≥456 μg/L for all seven insecticides tested. Our data indicate that neonicotinoid and butenolide insecticides pose less of a hazard with respect to mortality of the two species of mollusk compared to the potential hazard to other non-target aquatic insects.
Mostrar más [+] Menos [-]Aquatic subsidies transport anthropogenic nitrogen to riparian spiders Texto completo
2011
Akamatsu, Fumikazu | Toda, Hideshige
Stable nitrogen isotopic composition (δ¹⁵N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ¹⁵N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ¹⁵N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider’s guild designation and body size.
Mostrar más [+] Menos [-]Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms Texto completo
2009
Pestana, J.L.T. | Alexander, A.C. | Culp, J.M. | Baird, D.J. | Cessna, A.J. | Soares, A.M.V.M.
Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.
Mostrar más [+] Menos [-]Behavior of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata) after long-term exposure to PFOS Texto completo
2009
Gossum, Hans van | Bots, Jessica | Snijkers, Tom | Meyer, Johan | Wassenbergh, Sam Van | Coen, Wim De | Bruyn, Luc de
Perfluorooctane sulfonic acid (PFOS) is a persistent and ubiquitous environmental contaminant that has been detected in organisms worldwide. Here, we evaluate whether long-term (1 and 4 months) exposure to PFOS contamination affects the behavioural performance of freshwater larvae of the damselfly Enallagma cyathigerum (Insecta: Odonata). Our results show reduced behavioural performance with increasing PFOS concentration. In 1 month exposed larvae, no observed effect concentrations (NOECs) were 100 μg/L for general activity. In 4 months exposed larvae, NOECs were 10 μg/L, for each behavioural trait, except swimming acceleration of male larvae where the NOEC was 100 μg/L. When faced with PFOS concentrations above the NOEC, E. cyathigerum larvae were less active, less capable to escape a simulated predator attack and less efficient in foraging. Together, our results show that damselfly larvae suffer reduced survival-related behavioural performance. Long-term laboratory exposure to perfluorooctane sulfonic acid decreases behavioural performance of damselfly larvae (Insecta: Odonata).
Mostrar más [+] Menos [-]Microplastics have lethal and sublethal effects on stream invertebrates and affect stream ecosystem functioning Texto completo
2020
López-Rojo, Naiara | Pérez Ovalle, Javier | Alonso, Alberto | Correa-Araneda, Francisco | Boyero, Luz
Microplastics (MPs) are contaminants of increasing concern due to their abundance, ubiquity and persistence over time. However, knowledge about MP distribution in fresh waters and their effects on freshwater organisms is still scarce, and there is virtually no information about their potential influence on ecosystem functioning. We used a microcosm experiment to examine the effects of MPs (fluorescent, 10-μm polystyrene microspheres) at different concentrations (from 0 to 10³ particles mL⁻¹) on leaf litter decomposition (a key process in stream ecosystems) and associated organisms (the caddisfly detritivore Sericostoma pyrenaicum), and the extent to which MPs were attached to leaf litter and ingested and egested by detritivores, thus assessing mechanisms of MP trophic transfer. We found that MPs caused detritivore mortality (which increased 9-fold at the highest concentration) but did not affect their growth. Analysis of fluorescence in samples suggested that MPs were rapidly ingested (most likely through ingestion of particles attached to leaf litter) and egested. Leaf litter decomposition was reduced as a result of increasing MP concentrations; the relationship was significant only in the presence of detritivores, but microbially-mediated decomposition showed a similar trend. Our findings provide novel evidence of harmful effects of MPs on aquatic insects and stream ecosystem functioning, and highlight the need for the standardization of methods in future experiments with MPs in order to allow comparisons and generalizations.
Mostrar más [+] Menos [-]