Refinar búsqueda
Resultados 1-10 de 112
Biodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1 Texto completo
2016
Semboung Lang, Firmin | Destain, Jacqueline | Delvigne, Frank | Druart, Philippe | Ongena, Marc | Thonart, Philippe
peer reviewed | Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons.With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegradation experiment was conducted using mangrove sediments artificially contaminated with a mixture of four PAHs. The study used Rhodococcus erythropolis as an exogenous bacterial strain in order to assess the biodegradation of the PAH mixture by natural attenuation, biostimulation, bioaugmentation, and a combination of biostimulation and bioaugmentation. The results showed that the last three treatments were more efficient than natural attenuation. The biostimulation/bioaugmentation combination proved to be the most effective PAH degradation treatment.
Mostrar más [+] Menos [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics Texto completo
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
Mostrar más [+] Menos [-]Ozone pollution in the plate and logistics capital of China: Insight into the formation, source apportionment, and regional transport Texto completo
2022
Wang, Gang | Zhu, Zhongyi | Liu, Zhonglin | Liu, Xiaoyu | Kong, Fanhua | Nie, Liman | Gao, Wenkang | Zhao, Na | Lang, Jianlei
As the logistics and plate capital of China, the sources and regional transport of O₃ in Linyi are different from those in other cities because of the significant differences in industrial structure and geographical location. Twenty-five ozone pollution episodes (OPEs, 52 days) were identified in 2021, with a daily maximum 8-h moving average O₃ concentration (O₃₋MDA₈) of 184.5 ± 22.5 μg/m³. Oxygenated volatile organic compounds (OVOCs) and aromatics were the dominant contributors to ozone formation potential (OFP), with contributions of approximately 23.5–52.7% and 20.0–40.8%, respectively, followed by alkenes, alkanes, and alkynes. Formaldehyde, an OVOC with high concentrations emitted from the plate industry and vehicles, contributed the most to OFP (22.7 ± 5.5%), although formaldehyde concentrations only accounted for 9.4 ± 2.7% of the total non-methane hydrocarbon (NMHC) concentrations. The source apportionment results indicated that the plate industry was the dominant O₃ contributor (27.0%), followed by other sources (21.6%), vehicle-related sources (18.0%), solvent use (16.9%), liquefied petroleum gas (LPG)/natural gas (NG) (8.8%), and combustion sources (7.7%). Therefore, there is an urgent need to control the plating industry in Linyi to mitigate O₃ pollution. The backward trajectory, potential source contribution function (PSCF), and concentration weighted trajectory (CWT) models were used to identify the air mass pathways and potential source areas of air pollutants during the OPEs. O₃ pollution was predominantly affected by air masses that originated from eastern and local regions, while trajectories from the south contained the highest O₃ concentrations (207.0 μg/m³). The potential source area was from east and south Linyi during the OPEs. Therefore, it is critical to implement regional joint prevention and control measures to lower O₃ concentrations.
Mostrar más [+] Menos [-]A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example Texto completo
2021
Zhang, Xinmin | Zhao, Wenjuan | Nie, Lei | Shao, Xia | Dang, Hongyan | Zhang, Weiqi | Wang, Di
Volatile organic compounds (VOCs) has consistently been linked to ozone (O₃) and secondary organic aerosol (SOA) formation, and ongoing emission policies are primarily focusing on total VOCs without addressing the association between regulation measures and secondary pollution characteristic. For enhancing VOCs emission policy, we investigated potential formation of O₃ and SOA based on analyses of node-specific VOCs concentration and species distribution in solvent-consuming industry. Although aromatics were found to contribute most to O₃ and SOA formation averagely (2.57 ± 2.14 g O₃/g VOCs, 1.91 ± 1.67 g SOA/g VOCs), however, large disparity concerning emission and secondary pollution profile were identified among different emission nodes which demonstrated that regulation policy should be formulated based on comprehensive pollution characteristic. Therefore, emission nodes were classified into four clusters through data normalization, formatting and classification process, including aromatics dominated (7 emission nodes), aromatics-alkene dominated (4 emission nodes), aromatics-alcohols dominated (4 emission nodes) and alcohols dominated (4 emission nodes). And different dominating VOCs species were further obtained in each cluster. Subsequently, focusing regulation measures of reducing O₃ and SOA for different emission source clusters were proposed to guide pollution prevention and enhance future VOCs emission policies.
Mostrar más [+] Menos [-]Improved speciation profiles and estimation methodology for VOCs emissions: A case study in two chemical plants in eastern China Texto completo
2021
Zhang, Lei | Zhu, Xinzhi | Wang, Zeren | Zhang, Jie | Liu, Xia | Zhao, Yu
Volatile organic compounds (VOCs) poses a serious health risk through not only their own toxicity but also their role as precursors of ozone and secondary organic aerosols. The chemical industry, as one of the pillar industries in eastern China, is a key source of VOCs emissions. In this study, speciated VOCs emissions were measured in two chemical plants in eastern China. Oxygenated VOCs and aromatics were found to be the dominant species categories in both plants. The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of VOCs from dedicated resin production were both higher than general resin production. Three process-based models were used for the estimation of VOCs emissions from the two tested plants as a case study. The comparison between the emission factor model and the model with best available estimation methods (e.g., the measurement-based method, the mass balance method, the empirical formula method, and the correlation equation method) implied possible overestimation of the widely used emission factor model for the chemical industry. The probabilistic model developed in this study incorporated probability distribution of key parameters and proved to be a promising tool for emission inventory development and uncertainty analysis. The overall uncertainties of VOCs emissions based on the model were (−48%, +147%) and (−48%, +139%) for the two tested plants. In this study, the speciation profiles and estimation methodology for VOCs emissions from the chemical industry in China were both improved, which could benefit the accurate evaluation of the impacts of VOCs emissions.
Mostrar más [+] Menos [-]Primary organic gas emissions from gasoline vehicles in China: Factors, composition and trends Texto completo
2021
Qi, Lijuan | Zhao, Junchao | Li, Qiwei | Su, Sheng | Lai, Yitu | Deng, Fanyuan | Man, Hanyang | Wang, Xiaotong | Shen, Xiu'e | Lin, Yongming | Ding, Yan | Liu, Huan
Continuous tightening emission standards (ESs) facilitate the reduction of organic gas emissions from gasoline vehicles. Correspondingly, it is essential to update the emissions and chemical speciation of total organic gases (TOGs), including volatile organic compounds (VOCs), intermediate volatility organic compounds (IVOCs), CH₄, and unidentified non-methane hydrocarbons (NMHCs) for assessing the formation of ozone and secondary organic aerosol (SOA). In this study, TOG and speciation emissions from 12 in-use light-duty gasoline vehicle (LDGV) exhausts, covering the ESs from China II to China V, were investigated on a chassis dynamometer under the Worldwide Harmonized Light-duty Test Cycle (WLTC) in China. The results showed that the most effectively controlled subgroup in TOG emissions from LDGVs was VOCs, followed by the unidentified NMHCs and IVOCs. The mass fraction of VOCs in TOGs also reduced from 61 ± 9% to 46 ± 18% while the IVOCs gently increased from 2 ± 0.4% to 8 ± 4% along with the more stringent ESs. For the VOC subsets, the removal efficiency of oxygenated VOCs (OVOCs) was lower than those of other VOC subsets in the ESs from China IV to V, suggesting the importance of OVOC emission controls for relatively new LDGVs. The IVOC emissions were mainly subject to the ESs, then driving cycles and fuel use. The formation potentials of ozone and SOA from LDGVs decreased separately 96% and 90% along with the restricted ESs from China II-III to China IV. The major contributor of SOA formation transformed from aromatics in the VOC subsets for China II-III vehicles to IVOCs for China IV/V vehicles, highlighting that IVOC emissions from LDGVs are also needed more attentions to control in future.
Mostrar más [+] Menos [-]Transformation of m-aminophenol by birnessite (δ-MnO2) mediated oxidative processes: Reaction kinetics, pathways and toxicity assessment Texto completo
2020
Huang, Wenqian | Wu, Guowei | Xiao, Hong | Song, Haiyan | Gan, Shuzhao | Ruan, Shuhong | Gao, Zhihong | Song, Jianzhong
The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP. The results indicated that the transformation of m-AP with δ-MnO2 could be described by precursor complex formation rate-limiting model. The oxidative transformation of m-AP on the surface of δ-MnO2 was highly dependent on reactant concentrations, pH, temperature, and other co-solutes. The UV-VIS absorbance and mass spectra analysis indicated that the pathway leading to m-AP transformation may be the polymerization through the coupling reaction. The m-AP radicals were likely to be coupled by the covalent bonding between unsubstituted C2, C4 or C6 atoms in the m-AP aromatic rings to form oligomers as revealed by the results of activation energy and mass spectra. Furthermore, the toxicity assessment of the transformation productions indicated that the toxicity of m-AP to the E. coli K-12 could be reduced by MnO2 mediated transformation. The results are helpful for understanding the environmental behavior and potential risk of m-AP in natural environment.
Mostrar más [+] Menos [-]Winter VOCs and OVOCs measured with PTR-MS at an urban site of India: Role of emissions, meteorology and photochemical sources Texto completo
2020
Maji, Sujit | Beig, Gufran | Yadav, Ravi
Within the outline of air quality studies at metropolitan city, the mixing ratios of seven selected volatile organic compounds (VOCs) were measured during December 2015 (winter) at an urban site of Pune. The measurement of VOCs was conducted using a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). The study represents daily variability of ambient VOCs and their various associated emission sources. Diurnal profiles have differed from one VOC to another as the result of their different origins and the influence of different meteorological parameters (i.e. solar radiation, temperature) and planetary boundary layer height (PBL-H). The hourly mixing ratios of Oxygenated-VOCs (OVOCs) and aromatics were in the ranges of 0.6–29 ppbv and 0.13–14 ppbv, respectively with OVOCs accounted for up to 75% of total measured VOCs. The role of long-range transport from the clear Thar Desert and polluted Indo-Gangetic Plain (IGP) was observed during the episodes of 1–15 and 17–31 December 2015, respectively. VOCs showed the strong diurnal variations with peaks during morning and evening hours and lowest in the afternoon. In the evening period, high levels of aromatics coincided with the lowest OVOCs suggests the role of fresh vehicular emissions. Emission ratios of various VOCs as a function of temperature showed the role of different sources including the biogenic and photochemical production as well as the anthropogenic sources, respectively. The higher emission ratio of Δmethanol/Δacetonitrile at the study site suggests the long range transport of biomass burning plumes from the Indo-Gangetic Plain (IGP) during the 17–31, Dec. 2015. In addition to the pattern of emission, the diurnal and day-to-day variations of VOCs were influenced by the local meteorological conditions and depth of planetary boundary layer (PBL-H).
Mostrar más [+] Menos [-]Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves Texto completo
2020
Environmentally persistent free radicals (EPFRs) are receiving increasing concern due to their toxicity and ubiquity in the environment. To avoid restrictions imposed when using a high-volume active sampler, this study uses tree leaves to act as passive samplers to investigate the spatial distribution characteristics and sources of airborne EPFRs. Tree leaf samples were collected from 120 sites in five areas around China (each approximately 4 km × 4 km). EPFR concentrations in particles (<2 μm) on the surface of 110 leaf samples were detected, ranging from 7.5 × 10¹⁶ to 4.5 × 10¹⁹ spins/g. For the 10 N.D. samples, they were all collected from areas inaccessible by vehicles. The g-values of EPFRs on 68% leaf samples were larger than 2.004, suggesting the electron localized on the oxygen atom, and they were consistent with the road dust sample (g-value: 2.0042). Significant positive correlation was found between concentrations of elemental carbon (tracer of vehicle emissions) and EPFRs. Spatial distribution mapping showed that EPFR levels in various land uses differed noticeably. Although previous work has linked atmospheric EPFRs to waste incineration, the evidence in this study suggests that vehicle emissions, especially from heavy-duty vehicles, are the main sources. While waste incinerators with low emissions or effective dust-control devices might not be an important EPFR contributor. According to our estimation, over 90% of the EPFRs deposited on tree leaves might be attributed to automotive exhaust emissions, as a synergistic effect of primary exhausts and degradation of aromatic compounds in road dust. With adding the trapping agent into the particle samples (<2 μm), signals of hydroxyl radicals were observed. This indicates that EPFRs collected from this phytosampling method can lead to the release of reactive oxygen species (ROS) once they are inhaled by human beings. Thus, this study helps highlight EPFR “hotspots” for potential health risk identification.
Mostrar más [+] Menos [-]Mechanism of accelerating soot oxidation by NO2 from diesel engine exhaust Texto completo
2020
Li, Zehong | Zhang, Wei | Chen, Zhaohui | Jiang, Qianyu
NO₂ oxidation of soot exhausted from engines is more efficient than O₂ under low-temperature conditions, and is crucial for diesel particulate filter to control soot pollution. To explore the principle behind accelerating soot oxidation by NO₂, this paper uses density functional theory to reveal soot oxidation process by NO₂. This study contributes to understanding rules of soot oxidation by NO₂ and perfecting soot oxidation models to develop soot emission control technologies. Results show that NO₂ oxidation of pyrene radical involves three steps. Firstly, NO₂ attacks the C∗ atom to form –C (NO₂) with reaction energy of 306.3 kJ/mol, which decomposes to produce a –C (O) compound. Secondly, another NO₂ molecule climbs over an energy barrier of 8.8 kJ/mol, and changes into a –C (ONO₂) intermediate on –C (O). Finally, the N or O atom of NO₂ attacks –C (O) for a second time to help open aromatic ring for releasing CO or CO₂. Further decomposition of –C (NO₂) and –C (ONO₂) requires activation energies of 81.6 kJ/mol, 75.7 kJ/mol, and 53.5 kJ/mol, respectively, on preferential pathways. Calculations prove that attacks of O atom from NO₂ on C∗ help open the aromatic ring more efficiently than N atom.
Mostrar más [+] Menos [-]