Refinar búsqueda
Resultados 1-10 de 143
Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms.
1996
Peres F. | Florin D. | Grollier T. | Feurtet Mazel A. | Coste M. | Ribeyre F. | Ricard M. | Boudou A.
Phytoplankton groups as indicators of eutrophication in the Boka Kotorska bay [Adriatic sea, Montenegro (Yugoslavia)]
2001
Vuksanovic, N. (Institut za biologiju mora, Kotor (Yugoslavia))
During complex studies of phytoplankton, the role of particular phytoplankton groups was examined, as one of important indicators of eutrophic processes in the Bay of Boka Kotorska (Adriatic sea, Montenegro (Yugoslavia)). Throughout summer 1999, investigations have been performed at representative locations (Kotor, Tivat and Hercegnovi bays) at the depths of 0, 5, 10 and 20 m. Maximal values of microphytoplankton were found in Kotor Bay in July (2.1 x 10**6 cells/cubic dm). In Tivat Bay, maximal values of microphytoplankton were found in June, although they were ten times lower (2.4 x 10**5 cells/cubic dm). In the Bay of Hercegnovi, mean values were lower, while maximal quantity of microphytoplankton was found in August (2.6 x 10**3 cells/cubic dm). In the Boka Kotorska Bay, the maximal percentage of 95% of the group Bacillariophyceae was found in the most productive surface layers at the depths of 0 and 5 m. The impact of eutrophication was the most visible in the Kotor Bay. It decreased towards the open sea. Diatoms populations (Bacillariophyceae) were dominant in the Bay, while the participations of other groups is insignificant. Consequently, it means that Bacillariophyceae are the most adapted group to the eutrophic conditions of the Boka Kotorska Bay.
Mostrar más [+] Menos [-]Effects of algae proliferation and density current on the vertical distribution of odor compounds in drinking water reservoirs in summer Texto completo
2021
Wu, Tianhao | Zhu, Guangwei | Zhu, Mengyuan | Xu, Hai | Yang, Jun | Zhao, Xianfu
Reservoirs are an important type of drinking water source for megacities, while lots of reservoirs are threatened by odor problems during certain seasons. The influencing factors of odor compounds in reservoirs are still unclear. During August 2019, a nationwide survey investigating the distribution of odor compounds in reservoirs used as drinking water sources was conducted on seven reservoirs. 2-methylisoborneol (2-MIB) and geosmin were detected in almost every reservoir, and some odor compound concentrations even exceeded the odor threshold concentration. The average concentration of 2-MIB was 2.68 ng/L, and geosmin was 3.63 ng/L. The average chlorophyll a concentration was 8.25 μg/L. The dominant genera of phytoplankton in these reservoirs belonged to cyanobacteria and diatom. Statistical analysis showed that odor compound concentration was significantly related to the chlorophyll a concentration and indicated that the odor compounds mainly came from phytoplankton. The concentration of odor compounds in the euphotic zone was significantly related to phytoplankton species and biomass. Therefore, the odor compound concentrations in the subsurface chlorophyll maxima layer was generally higher than in the surface layer. However, the odor compounds in the hypolimnion layer were related to the density current. This research suggests that both phytoplankton proliferation events and heavy storm events are important risk factors increasing odor compounds in reservoirs. Control of algal bloom, in-situ profile monitoring system and depth-adjustable pumping system will greatly reduce the risk of odor problems in reservoirs using as water supplies for large cities.
Mostrar más [+] Menos [-]Glyphosate-based herbicide exposure affects diatom community development in natural biofilms Texto completo
2021
Corrales, Natalie | Meerhoff, Mariana | Antoniades, Dermot
Glyphosate herbicide is ubiquitously used in agriculture and weed control. It has now been identified in aquatic ecosystems worldwide, where numerous studies have suggested that it may have both suppressive and stimulatory effects on diverse non-target organisms. We cultured natural biofilms from a hypereutrophic environment to test the effects on periphytic diatoms of exposure to a glyphosate-based herbicide formulation at concentrations from 0 to 10 mg L⁻¹ of active ingredient. There were clear and significant differences between treatments in diatom community structure after the 15-day experiments. Diversity increased more in low glyphosate treatments relative to higher concentrations, and compositional analyses indicated statistically significant differences between glyphosate treatments. The magnitude of change observed was significantly correlated with glyphosate-based herbicide concentration. Our results show that glyphosate-based herbicides have species-selective effects on benthic diatoms that may significantly alter trajectories of community development and therefore may affect benthic habitats and whole ecosystem function.
Mostrar más [+] Menos [-]Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus Texto completo
2021
M'Rabet, Charaf | Kéfi–Daly Yahia, Ons | Chomérat, Nicolas | Zentz, Frédéric | Bilien, Gwenaël | Pringault, Olivier
Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus Texto completo
2021
M'Rabet, Charaf | Kéfi–Daly Yahia, Ons | Chomérat, Nicolas | Zentz, Frédéric | Bilien, Gwenaël | Pringault, Olivier
Incubation under controlled laboratory conditions were performed to assess the toxic effects of two plastic derived chemicals, bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), on the growth, photosynthetic efficiency and photosynthetic activity of the cosmopolitan diatom Chaetoceros decipiens-lorenzianus. Non-axenic diatom cells were exposed to concentrations of BPA and DEHP (separately and in mixture), mimicking concentrations observed in contaminated marine ecosystems, for seven days. Upon short-term exposure (i.e., during the first 48 h), BPA and DEHP induced a slight but significant stimulation of biomass and photosynthetic activity relative to the control, whereas, no significant impact was observed on the photosynthetic efficiency. Nevertheless, this pattern was transient. The stimulation was followed by a return to control conditions for all treatments at the end of incubation. These results showed that the cosmopolitan diatom Chaetoceros was not impacted by representative in situ concentrations of plastic derivatives, thus confirming its ability to thrive in coastal anthropogenic environments.
Mostrar más [+] Menos [-]Environmental DNA metabarcoding reveals estuarine benthic community response to nutrient enrichment – Evidence from an in-situ experiment Texto completo
2020
Clark, D.E. | Pilditch, C.A. | Pearman, J.K. | Ellis, J.I. | Zaiko, A.
Nutrient loading is a major threat to estuaries and coastal environments worldwide, therefore, it is critical that we have good monitoring tools to detect early signs of degradation in these ecologically important and vulnerable ecosystems. Traditionally, bottom-dwelling macroinvertebrates have been used for ecological health assessment but recent advances in environmental genomics mean we can now characterize less visible forms of biodiversity, offering a more holistic view of the ecosystem and potentially providing early warning signals of disturbance. We carried out a manipulative nutrient enrichment experiment (0, 150 and 600 g N fertilizer m⁻²) in two estuaries in New Zealand to assess the effects of nutrient loading on benthic communities. After seven months of enrichment, environmental DNA (eDNA) metabarcoding was used to examine the response of eukaryotic (18S rRNA), diatom only (rbcL) and bacterial (16S rRNA) communities. Multivariate analyses demonstrated changes in eukaryotic, diatom and bacterial communities in response to nutrient enrichment at both sites, despite differing environmental conditions. These patterns aligned with changes in macrofaunal communities identified using traditional morphological techniques, confirming concordance between disturbance indicators detected by eDNA and current monitoring approaches. Clear shifts in eukaryotic and bacterial indicator taxa were seen in response to nutrient loading while changes in diatom only communities were more subtle. Community changes were discernible between 0 and 150 g N m⁻² treatments, suggesting that estuary health assessment tools could be developed to detect early signs of degradation. Increasing variation in community structure associated with nutrient loading could also be used as an indicator of stress or approaching tipping points. This work represents a first step towards the development of molecular-based estuary monitoring tools, which could provide a more holistic and standardized approach to ecosystem health assessment with faster turn-around times and lower costs.
Mostrar más [+] Menos [-]Nanoplastics exposure modulate lipid and pigment compositions in diatoms Texto completo
2020
Nanoplastics exposure modulate lipid and pigment compositions in diatoms Texto completo
2020
The impact of nanoplastics (NP) using model polystyrene nanoparticles amine functionalized (PS–NH₂) has been investigated on pigment and lipid compositions of the marine diatom Chaetoceros neogracile, at two growth phases using a low (0.05 μg mL⁻¹) and a high (5 μg mL⁻¹) concentrations for 96 h. Results evidenced an impact on pigment composition associated to the light-harvesting function and photoprotection mainly at exponential phase. NP also impacted lipid composition of diatoms with a re-adjustment of lipid classes and fatty acids noteworthy. Main changes upon NP exposure were observed in galactolipids and triacylglycerol’s at both growth phases affecting the thylakoids membrane structure and cellular energy reserve of diatoms. Particularly, exponential cultures exposed to high NP concentration showed an impairment of long chain fatty acids synthesis. Changes in pigment and lipid content of diatom’ cells revealed that algae physiology is determinant in the way cells adjust their thylakoid membrane composition to cope with NP contamination stress. Compositions of reserve and membrane lipids are proposed as sensitive markers to assess the impact of NP exposure, including at potential predicted environmental doses, on marine organisms.
Mostrar más [+] Menos [-]How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima: A probable positive factor for red tides Texto completo
2019
Niu, Zhiguang | Xu, Wei’an | Na, Jing | Lv, Zhiwei | Zhang, Ying
Antibiotics have been widely detected in the ocean and have various impacts on the environment, while knowledge of their chronic influence on phytoplankton, especially red tide algae, is still limited. Dinoflagellates and green algae are common phytoplankton in marine ecosystems. The former is the main red tide algae, and the latter is an important primary producer. We investigated the long-term responses of two representative algae, Prorocentrum lima and Chlorella sp., to two common antibiotics (sulfamethoxazole (SMX) and norfloxacin (NFX)) at environmentally relevant levels (10 and 100 ng/L) during simulated natural conditions. The cell density and activities of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) were analyzed. The results showed that the influence of each antibiotic on Chlorella sp. was not significant (p > 0.05) during the first 10 days, but the influence of the antibiotics later began to show significant inhibition (p < 0.05) compared with the control group, especially during mixed exposure. P. lima was not inhibited, but its cell density increased. SMX had a superior stimulation effect on P. lima. The three enzymes activities of P. lima increased, and the antioxidant mechanism was not seriously impacted. However, for Chlorella sp., the activity of SOD increased while the activities of CAT and POD decreased, suggesting that this algae’s antioxidant system was unbalanced due to oxidative stress. Based on our results, the growth of P. lima was different from green algae Chlorella sp. as well as other inhibited marine algae (such as diatom, golden algae) studied in previous studies. Therefore, as a typical pollutant in the ocean, antibiotics may play a positive role in the bloom of dinoflagellate red tides.
Mostrar más [+] Menos [-]A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum Texto completo
2018
Long, Marc | Tallec, Kévin | Soudant, Philippe | Lambert, Christophe | Le Grand, Fabienne | Sarthou, Géraldine | Jolley, Dianne | Hégaret, Hélène
A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum Texto completo
2018
Long, Marc | Tallec, Kévin | Soudant, Philippe | Lambert, Christophe | Le Grand, Fabienne | Sarthou, Géraldine | Jolley, Dianne | Hégaret, Hélène
Harmful microalgal blooms are a threat to aquatic organisms, ecosystems and human health. Toxic dinoflagellates of the genus Alexandrium are known to produce paralytic shellfish toxins and to release bioactive extracellular compounds (BECs) with potent cytotoxic, hemolytic, ichtyotoxic and allelopathic activity. Negative allelochemical interactions refer to the chemicals that are released by the genus Alexandrium and that induce adverse effects on the physiology of co-occurring protists and predators. Releasing BECs gives the donor a competitive advantage that may help to form dense toxic blooms of phytoplankton. However BECs released by Alexandrium minutum are uncharacterized and it is impossible to quantify them using classical chemical methods. Allelochemical interactions are usually quantified through population growth inhibition or lytic-activity based bioassays using a secondary target organism. However these bioassays require time (for growth or microalgal counts) and/or are based on lethal effects. The use of pulse amplitude modulation (PAM) fluorometry has been widely used to assess the impact of environmental stressors on phytoplankton but rarely for allelochemical interactions. Here we evaluated the use of PAM and propose a rapid chlorophyll fluorescence based bioassay to quantify allelochemical BECs released from Alexandrium minutum. We used the ubiquitous diatom Chaetoceros muelleri as a target species. The bioassay, based on sub-lethal effects, quantifies allelochemical activity from different samples (filtrates, extracts in seawater) within a short period of time (2 h). This rapid bioassay will help investigate the role of allelochemical interactions in Alexandrium bloom establishment. It will also further our understanding of the potential relationship between allelochemical activities and other cytotoxic activities from BECs. While this bioassay was developed for the species A. minutum, it may be applicable to other species producing allelochemicals and may provide further insights into the role and impact of allelochemical interactions in forming dense algal blooms and structuring marine ecosystems.
Mostrar más [+] Menos [-]Effects of potash mining on river ecosystems: An experimental study Texto completo
2017
Cañedo-Argüelles, Miguel | Brucet, Sandra | Carrasco, Sergi | Flor-Arnau, Núria | Ordeix, Marc | Ponsá, Sergio | Coring, Eckhard
In spite of being a widespread activity causing the salinization of rivers worldwide, the impact of potash mining on river ecosystems is poorly understood. Here we used a mesocosm approach to test the effects of a salt effluent coming from a potash mine on algal and aquatic invertebrate communities at different concentrations and release modes (i.e. press versus pulse releases). Algal biomass was higher in salt treatments than in control (i.e. river water), with an increase in salt-tolerant diatom species. Salt addition had an effect on invertebrate community composition that was mainly related with changes in the abundance of certain taxa. Short (i.e. 48 h long) salt pulses had no significant effect on the algal and invertebrate communities. The biotic indices showed a weak response to treatment, with only the treatment with the highest salt concentration causing a consistent (i.e. according to all indices) reduction in the ecological quality of the streams and only by the end of the study. Overall, the treatment's effects were time-dependent, being more clear by the end of the study. Our results suggest that potash mining has the potential to significantly alter biological communities of surrounding rivers and streams, and that specific biotic indices to detect salt pollution should be developed.
Mostrar más [+] Menos [-]