Refinar búsqueda
Resultados 1-10 de 16
Response of the bacterial community of Propylea japonica (Thunberg) to Cry2Ab protein
2019
Zhang, Shuai | Luo, Junyu | Jiang, Weili | Wu, Linke | Zhang, Lijuan | Ji, Jichao | Wang, Li | Ma, Yan | Cui, Jinjie
Propylea japonica is a very important predator in agricultural ecosystems, which could be exposed to Bt protein. In this study, the bacterial community of P. japonica fed with normal food and food containing Cry2Ab protein was characterized for the first time using qPCR and high-throughput sequencing approaches. Results showed no effect of Cry2Ab on P. japonica development and reproduction. The most abundant bacterial phylum was Firmicutes, and the most abundant genus was Staphylococcus. The total bacteria copy number was not significantly different across four larval stages. Bacteria species composition was gathered more closely in feed on sucrose solution (sucrose-fed) than in larvae only fed on pea aphid (aphid-fed), the diversity indices of some operational taxonomic unit (OTU) were significantly different between sucrose-fed and aphid-fed samples. Different instar larval stages of P. japonica fed with sucrose solution containing Cry2Ab Bt protein and found no effect on microbial community composition and total bacteria copy numbers. However, effects on relative abundance of microbes, copy numbers of Corynebacterium 1 and Glutamicibacter arilaitensis were observed significantly lower in Bt-fed first and fourth larval stages. Low and high concentrations of Cry2Ab protein altered the microbial abundance relative to sucrose-fed P. japonica and copy numbers of G. arilaitensis and Staphylococcus xylosus were significantly lower in Bt-fed samples than control sucrose-fed. Our results are the first report showing that feeding on Cry2Ab protein does not alter microbial species composition in P. japonica, but effects gene copy number of some dominant bacteria. Further investigations are needed to assess the effect of copy number change on P. japonica.
Mostrar más [+] Menos [-]Decrease in catalase activity of Folsomia candida fed a Bt rice diet
2011
Yuan, Yiyang | Ke, Xin | Chen, Fajun | Krogh, Paul Henning | Ge, Feng
Here we report the effects of three Bt-rice varieties and their non-Bt conventional isolines on biological traits including survival, reproduction, and the activities of three antioxidant enzymes superoxide dismutase, catalase and peroxidase, in the Collembolan, Folsomia candida. The reproduction was significantly lower when fed Kemingdao and Huahui1 than those feeding on their non-GM near-isogenic varieties Xiushui and Minghui63 respectively, this can be explained by the differences of plant compositions depended on variety of rice. The catalase activity of F. candida was significantly lower when fed the Bt-rice variety Kemingdao compared to the near-isogenic non-Bt-rice variety Xiushui. This suggests that some Bt-rice varieties may impose environmental stress to collembolans. We emphasize that changes in activity of antioxidant enzymes of non-target organisms are important in understanding the ecological consequences for organisms inhabiting transgenic Bt-rice plantations.
Mostrar más [+] Menos [-]Soil nitrogen transformations under elevated atmospheric CO₂ and O₃ during the soybean growing season
2011
Pujol Pereira, Engil Isadora | Chung, Haegeun | Scow, Kate | Sadowsky, M. J. (Michael J.) | van Kessel, Chris | Six, Johan
We investigated the influence of elevated CO₂ and O₃ on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O₃ decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO₂ did not alter the parameters evaluated and both elevated CO₂ and O₃ showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO₂ may have limited effects on N transformations in soybean agroecosystems. However, elevated O₃ can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues.
Mostrar más [+] Menos [-]The profile of antibiotics resistance and integrons of extended-spectrum beta-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing
2010
Chen, Hao | Shu, Weiqun | Chang, Xiaosong | Chen, Ji-an | Guo, Yebin | Tan, Yao
The spreading of extended-spectrum β-lactamases (ESBL)-producing thermotolerant coliforms (TC) in the water environment is a threat to human health but little is known about ESBL-producing TCs in the Yangtze River. We received 319 ESBL-producing stains obtained from the Chongqing basin and we investigated antibiotic susceptibility, bla gene types and the presence of integrons and gene cassettes. 16.8% of TC isolates were ESBL-producing bacteria and blaTEM+CTx-M was the predominant ESBL type. 65.2% of isolates contained class 1 integrons, but only 3 carried intI 2. Gene cassettes were amplified and sequenced. aadA, drfA, cmlA, sat1, aar3 and two ORF cassettes were found. In conclusion, Yangtze River is heavily polluted by ESBL-producing TC bacteria and the combined bla gene type could enhance antibiotic resistance. Class 1 integrons were widespread in ESBL-producing isolates and play an important role in multi-drug resistance. Characterization of gene cassettes could reveal the dissemination of antibiotic resistance genes.
Mostrar más [+] Menos [-]Identification and quantification of a novel nitrate-reducing community in sediments of Suquía River basin along a nitrate gradient
2010
Reyna, Luciana | Wunderlin, Daniel Alberto | Genti-Raimondi, Susana
We evaluated the molecular diversity of narG gene from Suquía River sediments to assess the impact of the nitrate concentration and water quality on the composition and structure of the nitrate-reducing bacterial community. To this aim, a library of one of the six monitoring stations corresponding to the highest nitrate concentration was constructed and 118 narG clones were screened. Nucleotide sequences were associated to narG gene from alpha-, beta-, delta-, gammaproteobacteria and Thermus thermophilus. Remarkably, 18% of clones contained narG genes with less than 69% similarity to narG sequences available in databases. Thus, indicating the presence of nitrate-reducing bacteria with novel narG genes, which were quantified by real-time PCR. Results show a variable number of narG copies, ranging from less than 1.0 × 102 to 5.0 × 104 copies per ng of DNA, which were associated with a decreased water quality index monitored along the basin at different times.
Mostrar más [+] Menos [-]Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil
2011
Guo, Guang-Xia | Deng, Huan | Qiao, Min | Mu, Yu-Jing | Zhu, Yong-Guan
Toxicity of pyrene on the denitrifiers was studied by spiking an agricultural soil with pyrene to a series of concentrations (0–500mgkg⁻¹) followed by dose–response and dynamic incubation experiments. Results showed a positive correlation between potential denitrification activity and copy numbers of denitrifying functional genes (nirK, nirS and nosZ), and were both negatively correlated with pyrene concentrations. Based on the comparison of EC₅₀ values, denitrifiers harboring nirK, nirS or nosZ gene were more sensitive than denitrification activity, and denitrifiers harboring nirS gene were more sensitive than that harboring nirK or nosZ genes. Seven days after spiking with EC₅₀ concentration of pyrene, denitrifiers diversity decreased and community composition changed in comparison with the control. Phylogenetic analyses of three genes showed that the addition of pyrene increased the proportion of Bradyrhizobiaceae, Rhodospirillales, Burkholderiales and Pseudomonadales. Some species belonging to these groups were reported to be able to degrade PAHs.
Mostrar más [+] Menos [-]Environmental pollution by antibiotics and by antibiotic resistance determinants
2009
Martínez, José Luis
Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.
Mostrar más [+] Menos [-]Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent
2009
Himanen, Sari J. | Nerg, Anne-Marja | Nissinen, Anne | Stewart, C. Neal Jr | Poppy, Guy M. | Holopainen, Jarmo K.
Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.
Mostrar más [+] Menos [-]Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil
2009
Andria, Verania | Reichenauer, Thomas G. | Sessitsch, Angela
For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.
Mostrar más [+] Menos [-]Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac)
2014
Yuan, Yiyang | Krogh, Paul Henning | Bai, Xue | Roelofs, Dick | Chen, Fajun | Zhu-Salzman, Keyan | Liang, Yuyong | Sun, Yucheng | Ge, Feng
The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida. A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues.
Mostrar más [+] Menos [-]