Refinar búsqueda
Resultados 1-10 de 38
Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene Texto completo
2018
Li, Jie | Xing, Xiumei | Zhang, Xinjie | Liang, Boxuan | He, Zhini | Gao, Chen | Wang, Shan | Wang, Fangping | Zhang, Haiyan | Zeng, Shan | Fan, Junling | Chen, Liping | Zhang, Zhengbao | Zhang, Bo | Liu, Caixia | Wang, Qing | Lin, Weiwei | Dong, Guanghui | Tang, Huanwen | Chen, Wen | Xiao, Yongmei | Li, Daochuan
In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = −0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure.
Mostrar más [+] Menos [-]Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building Texto completo
2018
Zauli Sajani, Stefano | Marchesi, Stefano | Trentini, Arianna | Bacco, Dimitri | Zigola, Claudia | Rovelli, Sabrina | Ricciardelli, Isabella | Maccone, Claudio | Lauriola, Paolo | Cavallo, Domenico Maria | Poluzzi, Vanes | Cattaneo, Andrea | Harrison, Roy M.
Substantial efforts have been made in recent years to investigate the horizontal variability of air pollutants at regional and urban scales and epidemiological studies have taken advantage of resulting improvements in exposure assessment. On the contrary, only a few studies have investigated the vertical variability and their results are not consistent. In this study, a field experiment has been conducted to evaluate the variation of concentrations of different particle metrics and gaseous pollutants on the basis of floor height at a high rise building. Two 15-day monitoring campaigns were conducted in the urban area of Bologna, Northern Italy, one of the most polluted areas in Europe. Measurements sites were operated simultaneously at 2, 15, 26, 44 and 65 m a.g.l. Several particulate matter metrics including PM₂.₅ mass and chemical composition, particle number concentration and size distribution were measured. Time integrated measurement of NO₂ and BTEX were also included in the monitoring campaigns. Measurements showed relevant vertical gradients for most traffic related pollutants. A monotonic gradient of PM₂.₅ was found with ground-to-top differences of 4% during the warm period and 11% during the cold period. Larger gradients were found for UFP (∼30% during both seasons) with a substantial loss of particles from ground to top in the sub-50 nm size range. The largest drops in concentrations for chemical components were found for Elemental Carbon (−27%), iron (−11%) and tin (−36%) during winter. The ground-to-top decline of concentrations for NO₂ and benzene during winter was equal to 74% and 35%, respectively. In conclusion, our findings emphasize the need to include vertical variations of urban air pollutants when evaluating population exposure and associated health effects, especially in relation to some traffic related pollutants and particle metrics.
Mostrar más [+] Menos [-]VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix Texto completo
2018
Hu, Bin | Jarosch, Ann-Mareike | Gauder, Martin | Graeff-Hönninger, Simone | Schnitzler, Jörg-Peter | Grote, Rüdiger | Rennenberg, H. (Heinz) | Kreuzwieser, Jürgen
Energy crops are an important renewable source for energy production in future. To ensure high yields of crops, N fertilization is a common practice. However, knowledge on environmental impacts of bioenergy plantations, particularly in systems involving trees, and the effects of N fertilization is scarce. We studied the emission of volatile organic compounds (VOC), which negatively affect the environment by contributing to tropospheric ozone and aerosols formation, from Miscanthus and willow plantations. Particularly, we aimed at quantifying the effect of N fertilization on VOC emission. For this purpose, we determined plant traits, photosynthetic gas exchange and VOC emission rates of the two systems as affected by N fertilization (0 and 80 kg ha−1 yr−1). Additionally, we used a modelling approach to simulate (i) the annual VOC emission rates as well as (ii) the OH. reactivity resulting from individual VOC emitted. Total VOC emissions from Salix was 1.5- and 2.5-fold higher compared to Miscanthus in non-fertilized and fertilized plantations, respectively. Isoprene was the dominating VOC in Salix (80–130 μg g−1 DW h−1), whereas it was negligible in Miscanthus. We identified twenty-eight VOC compounds, which were released by Miscanthus with the green leaf volatile hexanal as well as dimethyl benzene, dihydrofuranone, phenol, and decanal as the dominant volatiles. The pattern of VOC released from this species clearly differed to the pattern emitted by Salix. OH. reactivity from VOC released by Salix was ca. 8-times higher than that of Miscanthus. N fertilization enhanced stand level VOC emissions, mainly by promoting the leaf area index and only marginally by enhancing the basal emission capacity of leaves. Considering the higher productivity of fertilized Miscanthus compared to Salix together with the considerably lower OH. reactivity per weight unit of biomass produced, qualified the C4-perennial grass Miscanthus as a superior source of future bioenergy production.
Mostrar más [+] Menos [-]A multi-year study of VOC emissions at a chemical waste disposal facility using mobile APCI-MS and LPCI-MS instruments Texto completo
2018
Healy, Robert M. | Chen, Qingfeng | Bennett, Julie | Karellas, Nicholas S.
Real-time analysis of volatile organic compounds (VOCs) in air is useful both for source identification and emissions compliance applications. In this work, two complementary triple quadrupole mass spectrometers, fitted with an atmospheric pressure chemical ionization (APCI) and a low pressure chemical ionization (LPCI) source, respectively, were deployed simultaneously to investigate emissions of VOCs associated with an Ontario-based chemical waste disposal facility. Mobile measurements performed upwind and downwind of the facility enabled selection of the best locations for stationary sampling. Seven separate field studies were undertaken between 2000 and 2016 to assess how emissions of VOCs have changed at the site as a function of time. Up to twenty-nine VOCs were successfully identified and quantified using MS/MS in each study. Simultaneous deployment of the two mass spectrometers enabled the detection of polar VOCs including alcohols, esters, amines and ketones as well as non-polar aromatic VOCs including benzene and naphthalene in real time. Concentrations of VOCs were found to decrease significantly in the vicinity of the facility over the sixteen year period, in particular since 2007. Concentration values for each year are compared with odour thresholds and provincial guidelines and implications of future expansion of on-site solid waste landfill volumes are also discussed.
Mostrar más [+] Menos [-]Characterization of volatile organic compounds and the impacts on the regional ozone at an international airport Texto completo
2018
Yang, Xiaowen | Cheng, Shuiyuan | Wang, Gang | Xu, Ran | Wang, Xiaoqi | Zhang, Hanyu | Chen, Guolei
In this study, the measurement of volatile organic compounds (VOCs) was conducted at Beijing Capital International Airport (ZBAA) and a background reference site in four seasons of 2015. Total concentrations of VOCs were 72.6 ± 9.7, 65.5 ± 8.7, 95.8 ± 11.0, and 79.2 ± 10.8 μg/m3 in winter, spring, summer, and autumn, respectively. The most abundant specie was toluene (10.1%–17.4%), followed by benzene, ethane, isopentane, ethane, acetylene, and n-butane. Seasonal variations of VOCs were analyzed, and it was found that the highest concentration occurring in summer, while the lowest in spring. For the diurnal variation, the concentration of VOCs in the daytime (9:00–15:00) was less than that at night (15:00–21:00) obviously. Ozone Formation Potential (OFP) was calculated by using Maximum Incremental Reactivity (MIR) method. The greatest contribution to OFP from alkenes and aromatics, which accounted for 27.3%–51.2% and 36.6%–58.6% of the total OFP. The WRF-CMAQ model was used to simulate the impact of airport emissions on the surrounding area. The results indicated that the maximum impact of VOCs emissions and all sources emissions at the airport on O3 was 0.035 and −23.8 μg/m3, respectively. Meanwhile, within 1 km from the airport, the concentration of O3 around the airport was greatly affected by airport emitted.
Mostrar más [+] Menos [-]Are ambient volatile organic compounds environmental stressors for heart failure? Texto completo
2018
Ran, Jinjun | Qiu, Hong | Sun, Shengzhi | Yang, Aimin | Tian, Linwei
Numerous epidemiological studies have indicated the adverse cardiovascular effects of air pollution on heart failure (HF) risk. However, little data are available directly evaluating the association of ambient volatile organic compounds (VOCs) with HF risk. We aimed to estimate the short-term effects of ambient VOCs on HF emergency hospitalizations in Hong Kong and to evaluate whether the associations were modified by sex and age.We collected the daily VOCs concentrations from the Hong Kong Environmental Protection Department between April 2011 to December 2014. HF emergency hospital admission data were obtained from the Hospital Authority of Hong Kong. Generalized additive model (GAM) integrated with the distributed lag model (DLM) was used to estimate the excess risks of HF emergency hospitalizations with ambient concentrations of each VOCs groups – alkane, alkene, alkyne, benzene and substituted benzene.We observed short-term effects of alkyne and benzene on an increased risk of HF emergency hospitalizations. The cumulative effect over 0–6 lag days (dlm₀₋₆) for an IQR increment of alkyne (1.17 ppb) was associated with 4.2% (95% CI: 1.18%–7.26%) increases of HF emergency hospitalizations, while the corresponding effect estimate over dlm₀₋₂ for benzene per IQR (0.43 ppb) was 2.7% (95% CI: 0.39%–5.04%). Each VOCs groups was significantly associated with HF emergency hospitalizations in men.Ambient volatile organic compounds, particularly alkyne and benzene, were associated with increased risks of heart failure in the Hong Kong population.
Mostrar más [+] Menos [-]VNN3, a potential novel biomarker for benzene toxicity, is involved in 1, 4-benzoquinone induced cell proliferation Texto completo
2018
Sun, Pengling | Guo, Xiaoli | Chen, Yujiao | Zhang, Wei | Duan, Huawei | Gao, Ai
Benzene is widely employed in the field of production, and its toxicity on biological systems has received increasing attention. Cell proliferation is a major life characteristic of living organisms. KLF15 and NOTCH1 are mature and classical genes in cell proliferation studies, particularly in the area of tumor investigation. The aim of this study was to investigate the effect and mechanism of VNN3 on cell proliferation induced by 1,4-benzoquinone (1,4-BQ), an important metabolite of benzene, and obtain a sensitive biomarker for the hazard screening and health care of benzene exposure. Normally growing AHH-1 cells were cultured in vitro and were incubated with different concentrations of 1,4-BQ (0, 10, 20, and 40 μM) for 24 h. A CCK-8 assay was used to assess the cell viability, whereas EdU was used to detect the cell proliferation of AHH-1 cells. The expression of VNN3, KLF15 and NOTCH1 was detected by real-time PCR. Moreover, a lentiviral model was constructed in AHH-1 cells to interfere with VNN3 expression. The results showed that 1,4-BQ clearly increased the expression of VNN3. Moreover, 1,4-BQ dose-dependently inhibited cell proliferation and caused increased KLF15 expression; in contrast, the NOTCH1 expression decreased in AHH-1 cells. Furthermore, following interference with the VNN3 expression, the cell proliferation inhibition and the expression of KLF15 and NOTCH1 were rescued. To further investigate the action of VNN3 in benzene hematotoxicity, we assessed it in benzene-exposed workers. The results showed that there was a remarkable correlation between the VNN3 expression and hemogram, which included RBC, NEUT and HGB. In addition, analysis of the KLF15 and NOTCH1 expression showed that the VNN3 expression was related to cell proliferation, which was consistent with the in vitro results. In conclusion, VNN3 influences cell proliferation induced by 1,4-BQ by regulating the expression of KLF15 and NOTCH1. VNN3 may represent a potential biomarker of benzene toxicity.
Mostrar más [+] Menos [-]Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning Texto completo
2018
Pallozzi, Emanuele | Lusini, Ilaria | Cherubini, Lucia | Hajiaghayeva, Ramilla A. | Ciccioli, Paolo | Calfapietra, Carlo
In the Mediterranean ecosystem, wildfires are very frequent and the predicted future with a probable increase of fires could drastically modify the vegetation scenarios. Vegetation fires are an important source of gases and primary emissions of fine carbonaceous particles in the atmosphere. In this paper, we present gaseous and particulate emissions data from the combustion of different plant tissues (needles/leaves, branches and needle/leaf litter), obtained from one conifer (Pinus halepensis) and one deciduous broadleaf tree (Quercus pubescens). Both species are commonly found throughout the Mediterranean area, often subject to wildfires. Experiments were carried out in a combustion chamber continuously sampling emissions throughout the different phases of a fire (pre-ignition, flaming and smoldering). We identified and quantified 83 volatile organic compounds including important carcinogens that can affect human health. CO and CO₂ were the main gaseous species emitted, benzene and toluene were the dominant aromatic hydrocarbons, methyl-vinyl-ketone and methyl-ethyl-ketone were the most abundant measured oxygenated volatile organic compounds. CO₂ and methane emissions peaked during the flaming phase, while the peak of CO emissions occurred during the smoldering phase. Overall, needle/leaf combustion released a greater amount of volatile organic compounds into the atmosphere than the combustion of branches and litter. There were few differences between emissions from the combustion of the two tree species, except for some compounds. The combustion of P. halepensis released a great amount of monoterpenes as α-pinene, β-pinene, p-cymene, sabinene, 3-carene, terpinolene and camphene that are not emitted from the combustion of Q. pubescens. The combustion of branches showed the longest duration of flaming and peak of temperature. Data presented appear crucial for modeling with the intent of understanding the loss of C during different phases of fire and how different typologies of biomass can affect wildfires and their speciation emissions profile.
Mostrar más [+] Menos [-]Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk Texto completo
2018
Xu, Jinyou | Chiang, Hung-Che | Shie, Ruei-Hao | Ku, Chun-Hung | Lin, Tzu-Yu | Chen, Mu-Jean | Chen, Nai-Tzu | Chen, Yu-Cheng
This study investigated ambient volatile organic compounds (VOCs) and assessed excess health risks for child, adult and elderly populations in a residential area near a large-scale petrochemical complex in central Taiwan. A total of 155 daily VOC samples were collected in canisters from nine sites in spring, summer and winter during 2013–2014. We used a positive matrix factorization (PMF) model incorporating a conditional probability function (CPF) to quantify the potential sources of VOCs with the influences of local source directions. We then evaluated the non-cancer and cancer risks of specific VOCs with probabilistic distributions by performing a Monte-Carlo simulation for the child, adult, and elderly populations. Most of the VOCs were higher in summer than in winter or spring for the sampling sites. The presence of vinyl acetate, chloroethene, and 1,2-dichloroethane were significantly high within a 5-km radius of the petrochemical complex. Four potential sources of ambient VOCs, industrial emission (49.2%–63.6%), traffic-related emission (13.9%–19.1%), fuel evaporation (12.3%–16.9%), and aged emission (10.2%–14.8%), were identified. The cancer risk of ambient VOC exposure was mainly attributed to the industrial source in the study area, while the non-cancer risk was of less concern. Benzene associated with fuel evaporation resulted in the highest cancer risk (4.1 × 10−5−5.5 × 10−5) as compared to that of the other toxic VOCs.
Mostrar más [+] Menos [-]Volatile organic compounds in stormwater from a community of Beijing, China Texto completo
2018
Li, Haiyan | Wang, Youshu | Liu, Fei | Tong, Linlin | Li, Kun | Yang, Hua | Zhang, Liang
Stormwater samples were collected from six different land use sites with three time-intervals during a precipitation event on August 12, 2016, from a community of Beijing, China. A total of 46 species volatile organic compounds (VOCs) were detected in these stormwater samples, including methyl tertiary-butyl ether (MTBE), aromatic hydrocarbons, halogenated aromatics, Halogenated alkanes, and alkenes. The total VOC concentrations varied in the six sites following order: highway junction > city road > gas station > park > campus > residential area, except for MTBE, which was much higher at gas station compared to other land use sites. ANOVA results indicated both land use and precipitation time intervals could significantly affect the VOC concentrations even in the small area. The Beijing atmospheric VOC concentrations were too low to explain the high concentrations in stormwater, suggesting that land surfaces may be the main sources of VOC other than the ambient atmosphere. MTBE and other VOCs correlation analysis indicated that MTBE mostly came from gasoline emissions, spills or vehicle exhausts, whereas the BTEX (benzene, toluene, ethylbenzene, Xylenes) and the halogenated aromatics were transferred from chemical plants through land surfaces accumulating and the wind blowing atmospheric VOCs. Xylenes/ethylbenzene (X/E) ratios variations indicated that stormwater incorporated larger amount of fresh emitted air during the precipitation event than prior to it. Information of these stormwater VOCs in this study could be used in the community pollution reduction strategies.
Mostrar más [+] Menos [-]