Refinar búsqueda
Resultados 1-10 de 364
Biodegradability of coffee deposit and its influence on recipients
1997
Vulic, D. (Institut za vodoprivredu "Jaroslav Cerni", Beograd (Yugoslavia)) | Cukic, Z. (Univerzitet u Novom Sadu, Novi Sad (Yugoslavia). Prirodno-matematicki fakultet, Institut za hemiju)
Owing to the habit of most of Yugoslavs to prepare coffee without filtering, the large part of used coffee comes to recipients. In this paper, the influence of coffee deposits reaching recipients in Yugoslavia is analyzed. Results of laboratory examination of the biodegradability and kinetic of biodegradability of coffee deposits are also presented.
Mostrar más [+] Menos [-]Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field Texto completo
2022
Wang, Yuchen | Li, Ang | Ren, Binqiao | Han, Zijian | Lin, Junhao | Zhang, Qiwei | Cao, Tingting | Cui, Chongwei
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb²⁺, Cu²⁺, Zn²⁺). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu²⁺ and Zn²⁺ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb²⁺ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb²⁺ ions could form a more stable coordination sphere in metal complexes than Cu²⁺ and Zn²⁺ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.
Mostrar más [+] Menos [-]Multi-ionic interaction with magnesium doped hydroxyapatite-zeolite nanocomposite porous polyacrylonitrile polymer bead in aqueous solution and spiked groundwater Texto completo
2022
G, Alagarsamy | P, Nithiya | R, Sivasubramanian | R, Selvakumar
Removal of multi-ionic contaminants from water resources has been a major challenge faced during the treatment of water for drinking and industrial applications. In the present study, varying composition of magnesium doped hydroxyapatite (Mg-HAp) and zeolite nanocomposite embedded porous polymeric beads were synthesized using solvent displacement method and its sorption efficiency towards multi-ion contaminant (such as Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Tl, Th, U, V and Zn) was investigated in aqueous solution and spiked groundwater. The prepared beads were characterized using suitable techniques like high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) equation. The surface area and pore radius of the beads varied from 6.996 to 66.469 m²/g and 1.698–3.960 nm respectively according to the composition of the bead. The control bead without nanocomposite showed maximum surface area. Multi-ion adsorptions onto beads were confirmed using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) and X-ray photoelectron spectrophotometer (XPS). The sorption efficiency was high at pH 5 owing to its anionic surface charge leading to an increase in affinity towards the cations. For validating field application, selected high performance beads were tested in multi-ion spiked groundwater. The results indicated that the Mg-HAp nanocomposite bead dominate all the other bead compositions with more than 90% removal efficiency for most of the multi-ion contaminants. The feasible adsorption mechanism has been discussed. This adsorption study revealed that the Mg-HAp nanocomposite bead is a promising material that is cost-effective, non-toxic, biodegradable, eco-friendly and highly efficient towards the removal of multi-ionic contaminants from groundwater.
Mostrar más [+] Menos [-]Guiding environmental sustainability of emerging bioconversion technology for waste-derived sophorolipid production by adopting a dynamic life cycle assessment (dLCA) approach Texto completo
2021
Hu, Xiaomeng | Subramanian, Karpagam | Wang, Huaimin | Roelants, Sophie L.K.W. | To, Ming Ho | Soetaert, Wim | Kaur, Guneet | Lin, Carol Sze Ki | Chopra, Shauhrat S.
Microbial biosurfactants are surface-active molecules that are naturally produced by a range of microorganisms. They have certain advantages over chemical surfactants, such as lower toxicity, higher biodegradability, anti-tumor, and anti-microbial properties. Sophorolipids (SLs) in particular are one of the most promising biosurfactants, as they hold the largest share of the biosurfactant market. Currently, researchers are developing novel approaches for SL production that utilize renewable feedstocks and advanced separation technologies. However, challenges still exist regarding consumption of materials, enzymes, and electricity, that are primarily fossil based. Researchers lack a clear understanding of the associated environmental impacts. It is imperative to quantify and optimize the environmental impacts associated with this emerging technology very early in its design phase to guide a sustainable scale-up. It is necessary to take a collaborative perspective, wherein life cycle assessment (LCA) experts work with experimentalists, to quantify environmental impacts and provide recommendations for improvements in the novel waste-derived SL production pathways. Studies that have analyzed the environmental sustainability of microbial biosurfactant production are very scarce in literature. Hence, in this work, we explore the possibility of applying LCA to evaluate the environmental sustainability of SL production. A dynamic LCA (dLCA) framework that quantifies the environmental impacts of a process in an iterative manner, is proposed and applied to evaluate SL production. The first traversal of the dLCA was associated with the selection of an optimal feedstock, and results identified food waste as a promising feedstock. The second traversal compared fermentation coupled with alternative separation techniques, and highlighted that the fed-batch fermentation of food waste integrated with the in-situ separation technique resulted in less environmental impacts. These results will guide experimentalists to further optimize those processes, and improve the environmental sustainability of SL production. Resultant datasets can be iteratively used in subsequent traversals to account for technological changes and mitigate the corresponding impacts before scaling up.
Mostrar más [+] Menos [-]The cotreatment of old landfill leachate and domestic sewage in rural areas by deep subsurface wastewater infiltration system (SWIS): Performance and bacterial community☆ Texto completo
2021
Chen, Fengming | Li, Guowen | Li, Xiaoguang | Wang, Hongqiang | Wu, Huabin | Li, Jiaxi | Li, Caole | Li, Wei | Zhang, Lieyu | Xi, Beidou
In this work, two deep subsurface wastewater infiltration systems (SWISs) were constructed and fed with domestic sewage (control system, S1) and mixed wastewater consisting of old landfill leachate and domestic sewage (experimental system, S2). S1 and S2 exhibited favorable removal efficiencies, with TP (98.8%, 98.7%), COD (87.6%, 86.9%), NH₄⁺-N (99.8%, 99.9%) and TN (99.2%, 98.9%). Even when increasing the pollutant load in S2 by adding old landfill leachate, the almost complete removal performance could be maintained in terms of low effluent concentrations and even increased in terms of load removal capabilities, which included COD (19.4, 25.9 g∙m⁻²·d⁻¹), NH₄⁺-N (8.2, 19.9 g∙m⁻²·d⁻¹), TN (8.9, 20.6 g∙m⁻²·d⁻¹). To investigate the transformation of dissolved organic matter along depth, Three-Dimensional Excitation Emission Matrix fluorescence spectroscopy combined with Fluorescence Regional Integration analysis was applied. The results showed that PⅠ,ₙ and PⅡ,ₙ (the proportions of biodegradable fractions) increased gradually from 6.59% to 21.8% at S2_20 to 10.8% and 27.7% at S2_110, but PⅢ,ₙ and PⅤ,ₙ (the proportions of refractory organics) declined from 23.1% to 27.8% at S2_20 to 21.1% and 16.4% at S2_110, respectively. In addition, high-throughput sequencing technology was employed to observe the bacterial community at different depths, and the predicted functional potential of the bacterial community was analyzed by PICRUSt. The results showed that the genera Flavobacterium, Pseudomonas, Vogesella, Acinetobacter and Aquabacterium might be responsible for refractory organic degradation and that their products might serve as the carbon source for denitrifiers to achieve simultaneous nitrate and refractory organic removal. PICRUSt further demonstrated that there was a mutual response between refractory organic degradation and denitrification. Overall, the combined treatment of domestic sewage and old leachate in rural areas by SWIS is a promising approach to achieve comprehensive treatment.
Mostrar más [+] Menos [-]Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge Texto completo
2021
Tang, Jian | Qiu, Zhongping | Tang, Hengjun | Wang, Haiyue | Sima, Weiping | Liang, Chao | LIao, Yi | Li, Zhihua | Wan, Shan | Dong, Jianwei
In this work, the novel technology was used to remove heavy metal from sludge. The coupled with biodegradable ethylenediamine disuccinic acid (EDDS) and approaching anode electrokinetic (AA-EK) technique was used to enhance heavy metal removing from sludge. Electric current, sludge and electrolyte characteristics, heavy metal removal efficiency and residual content distribution, and heavy metal fractions percentage of variation were evaluated during the electrokinetic remediation process. Results demonstrated that the coupled with EDDS and AA-EK technique obtain a predominant heavy metal removal efficiency, and promote electric current increasing during the enhanced electrokinetic remediation process. The catholyte electrical conductivity was higher than the anolyte, and electrical conductivity of near the cathode sludge achieved a higher value than anode sludge during the coupled with EDDS and AA-EK remediation process. AA-EK technique can produce a great number of H⁺, which caused the sludge acidification and pH decrease. Cu, Zn, Cr, Pb, Ni and Mn obtain the highest extraction efficiency after the coupled with EDDS and AA-EK remediation, which were 52.2 ± 2.57%, 56.8 ± 3.62%, 60.4 ± 3.62%, 47.2 ± 2.35%, 53.0 ± 3.48%, 54.2 ± 3.43%, respectively. Also, heavy metal fractions analysis demonstrated that the oxidizable fraction percentage decreased slowly after the coupled with EDDS and AA-EK remediation.
Mostrar más [+] Menos [-]Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis Texto completo
2021
Cui, Yin Hua | Shi, Qing Shan | Zhang, Dan Dan | Wang, Lingling | Feng, Jin | Chen, Yi-Wen | Xie, Xiao Bao
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.
Mostrar más [+] Menos [-]Smoked cigarette butt leachate impacts survival and behaviour of freshwater invertebrates Texto completo
2020
Green, Dannielle Senga | Kregting, Louise | Boots, Bas
Smoked cigarette filters a. k.a. “butts”, composed of plastic (e.g. cellulose acetate) are one of the world’s most common litter items. In response to concerns about plastic pollution, biodegradable cellulose filters are being promoted as an environmentally safe alternative, however, once smoked, both contain toxins which can leach once discarded. The impacts of biodegradable butts as littered items on the receiving environment, in comparison with conventional butts has not yet been assessed. A freshwater mesocosm experiment was used to test the effects of leachate from smoked cellulose acetate versus smoked cellulose filters at a range of concentrations (0, 0.2, 1 and 5 butts L⁻¹) on the mortality and behaviour of four freshwater invertebrates (Dreissena polymorpha, Polycelis nigra, Planorbis planorbis and Bithynia tentaculata). Leachate derived from 5 butts L⁻¹ of either type of filter caused 60–100% mortality to all species within 5 days. Leachate derived from 1 butt L⁻¹ of either type resulted in adults being less active than those exposed to no or 0.2 butts L⁻¹ leachate. Cigarette butts, therefore, regardless of their perceived degradability can cause mortality and decreased activity of key freshwater invertebrates and should always be disposed of responsibly.
Mostrar más [+] Menos [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment Texto completo
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
Mostrar más [+] Menos [-]Combined effect of plastic litter and increased atmospheric nitrogen deposition on vegetative propagules of dune plants: A further threat to coastal ecosystems Texto completo
2020
Menicagli, Virginia | Balestri, Elena | Vallerini, Flavia | Castelli, Alberto | Lardicci, Claudio
Large amounts of non-biodegradable plastics are currently deposited on beach-dune systems, and biodegradable plastics could enter these already declining habitats in coming years. Yet, the impacts of plastics on vegetative recruitment, a plant strategy playing a key role in dune stabilization, are unknown. Whether these pollutants interact with increased atmospheric nitrogen (N) deposition, a major global driver of plant biodiversity loss, in affecting plant communities of such nutrient-poor habitats, and how plant-plant interactions mediate their effects need to be explored. In a one-year field experiments, we examined individual and combined effects of plastic (non-biodegradable, biodegradable), N deposition (ambient, elevated) and biotic condition (no interaction, interaction with a conspecific or with a hetero-specific) on the colonization success and growth of vegetative propagules of dune plants. Thinopyrum junceum and Sporobolus pumilus were chosen as models because they co-occur along Mediterranean dunes and differ in ecological role (dune- vs. non dune-building) and photosynthetic pathway (C3 vs. C4). For both species, survival probability was reduced by non-biodegradable plastic and elevated N by up to 100%. Thinopyrum junceum survival was also reduced by S. pumilus presence. Elevated N and biodegradable plastic reduced T. junceum shoot biomass when grown alone and with a conspecific, respectively; these factors in combination mitigated their negative individual effects on root biomass. Biodegradable plastic increased S. pumilus shoot and root biomass, and in combination with elevated N caused a greater biomass investment in belowground (root plus rhizome) than aboveground organs. Non-biodegradable plastic may be a further threat to dune habitats by reducing plant colonization. Biodegradable plastic and increased N deposition could favour the generalist S. pumilus and hinder the dune-building T. junceum. These findings highlight the urgency of implementing measures for preventing plastic deposition on beaches and reducing N input.
Mostrar más [+] Menos [-]