Refinar búsqueda
Resultados 1-10 de 23
Prediction of selenium uptake by pak choi in several agricultural soils based on diffusive gradients in thin-films technique and single extraction
2020
Peng, Qin | Wang, Dan | Wang, Mengke | Zhou, Fei | Yang, Wenxiao | Liu, Yongxian | Liang, Dongli
The accurate assessment of soil selenium (Se) bioavailability is crucial for Se biofortification in Se-deficient areas and risk assessment in selenosis areas. However, a universally accepted approach to evaluate Se bioavailability in soil is currently lacking. This research investigated Se bioavailability in six soils treated with selenite (Se(IV)) or selenate (Se(VI)) by comparing diffusive gradients in thin-films (DGT) technique and chemical extraction methods through pot experiments. A bioindicator method was used to evaluate Se concentrations in pak choi and compare the results with the Se concentration measured by other methods. Results showed that chemical extraction methods presented different extraction efficiencies for available Se over a range of soil types, and the same extraction method had various extraction efficiencies for different Se species in the same soil. DGT measured Se concentrations (CDGT−Se) for Se(VI) treatment were 2.3–34.1 times of those for Se(IV) treatment. KH2PO4–K2HPO4 and AB-DTPA extractable Se could predict the bioavailability of soil Se, but they were disturbed by soil properties. HAc extraction was unsuitable for evaluating Se bioavailability in different Se(IV)-treated soils. By contrast, DGT technique was preferable for predicting plant uptake of Se(IV) over chemical extraction methods. Although DGT technique was independent of soil properties, KH2PO4–K2HPO4 extraction provided the best fitting regression equation for Se(VI) when it was dependent on soil organic matter. Thus, KH2PO4–K2HPO4 extraction may be preferred to assess Se(VI) bioavailability in different soil types on a large scale.
Mostrar más [+] Menos [-]Identifying key drivers for geospatial variation of grain micronutrient concentrations in major maize production regions of China
2020
Zhao, Qing-Yue | Xu, Shi-Jie | Zhang, Wu-Shuai | Zhang, Zhe | Yao, Zhi | Chen, Xin-Ping | Zou, Chun-Qin
Micronutrient deficiencies are prevalent health problems worldwide. The maintenance of adequate concentrations of micronutrients in maize grain is crucial for human health. We investigated the overall status and geospatial variation of micronutrients in Chinese maize grains and identified their key drivers. A field survey was conducted in four major maize production areas of China in 2017 with 980 pairs of soil and grain samples collected from famers’ fields. At a national scale, grain zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) concentrations varied substantially, with average values of 17.4, 17.3, 4.9, and 1.5 mg kg⁻¹, respectively, suggesting a solid gap between grain Zn and Fe concentrations and the biofortification target values. Significant regional difference in the concentrations of Zn, Mn and Cu, but not Fe, were observed in grain, with much higher levels in Southwest China. The nutritional yields of Zn, Fe and Cu were lower than the energy and Mn yields, indicating an unbalanced output between energy and micronutrients in current maize production system. Grain Zn, Fe, Mn and Cu correlated negatively with maize yield in most test regions. Increased nitrogen (N) rate positively affected grain Zn and Cu, while increased phosphorus (P) rate negatively affects grain Zn and Fe. Apart from Fe, available Zn, Mn and Cu in soil exerted significant positive effects on grain Zn, Mn and Cu concentrations, respectively. Decrease in soil pH and increase in the organic matter content may increase the accumulation of Fe and Mn in grain. Grain Zn and Cu concentrations increased as available soil P decreased. Of the factors considered in this study, grain yield, N and P rates, soil pH and organic matter were the main factors that affect grain micronutrient status and should be more extensively considered in the production and nutritional quality of maize grain.
Mostrar más [+] Menos [-]Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy
2017
Qin, Hai-Bo | Zhu, Jian-Ming | Lin, Zhi-Qing | Xu, Wen-Po | Tan, De-Can | Zheng, Li-Rong | Takahashi, Yoshio
Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56–81%) and lesser Se(IV) (19–44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69–73%) > upland soil (56–63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas.
Mostrar más [+] Menos [-]Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field
2020
Tang, Lin | Hamid, Yasir | Zehra, Afsheen | Sahito, Zulfiqar Ali | He, Zhenli | Beri, Wolde Tefera | Khan, Muhammad Bilal | Yang, Xiaoe
Phytoremediation coupled with agro-production is considered a sustainable strategy for remediation of trace element contaminated fields without interrupting crop production. In this study hyperaccumulator Sedum alfredii was intercropped with a leguminous plant fava bean (Vicia fava) in cadmium (Cd) and lead (Pb) co-contaminated field to evaluate the effects of intercropping on growth performance and accumulations of trace elements in plants with plant growth promoting endophyte (PGPE) consortium application. The results showed, compared with monoculture, intercropping coupled with inoculation application promoted biomass as well as Cd and Pb concentrations in individual parts of both plants, thus increasing the removal efficiencies of trace elements (4.49-folds for Cd and 5.41-folds for Pb). Meanwhile, this superposition biofortification measure maintained normal yield and nutrient content, and limited the concentration of Cd and Pb within the permissible limit (<0.2 mg kg⁻¹ FW) in fava bean during the grain production. These results demonstrated a feasible technical system for phytoremediation coupled with agro-production in slightly or moderately Cd and Pb co-contaminated field, and also provided useful information for further investigation of interaction mechanisms between intercropping and PGPEs inoculation.
Mostrar más [+] Menos [-]Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants
2018
Hussain, Afzal | Ali, Shafaqat | Rizwan, Muhammad | Zia ur Rehman, Muhammad | Javed, Muhammad Rizwan | Imran, Muhammad | Chatha, Shahzad Ali Shahid | Nazir, Rashid
An experiment was performed to explore the interactive impacts of zinc oxide nanoparticles (ZnO NPs) and cadmium (Cd) on growth, yield, antioxidant enzymes, Cd and zinc (Zn) concentrations in wheat (Triticum aestivum). The ZnO NPs were applied both in Cd-contaminated soil and foliar spray (in separate studies) on wheat at different intervals and plants were harvested after physiological maturity. Results depicted that ZnO NPs enhanced the growth, photosynthesis, and grain yield, whereas Cd and Zn concentrations decreased and increased respectively in wheat shoots, roots and grains. The Cd concentrations in the grains were decreased by 30–77%, and 16–78% with foliar and soil application of NPs as compared to the control, respectively. The ZnO NPs reduced the electrolyte leakage while increased SOD and POD activities in leaves of wheat. It can be concluded that ZnO NPs (levels used in the study) could effectively reduce the toxicity and concentration of Cd in wheat whereas increase the Zn concentration in wheat. Thus, ZnO NPs might be helpful in decreasing Cd and increasing Zn biofortification in cereals which might be effective to reduce the hidden hunger in humans owing the deficiency of Zn in cereals.
Mostrar más [+] Menos [-]Physiological Responses of Pak Choi to Exogenous Foliar Salicylic Acid Under Soil Se Stress
2021
Chen, Jinping | Huang, Taiqing | Zeng, Chengcheng | Xing, Ying | Pan, Liping | Liao, Qing | Liang, Panxia | Jiang, Zepu | Liu, Yongxian
In plants, excess selenium causes general toxic symptoms. However, salicylic acid plays an important role in alleviating toxic effects of various stresses. This study aimed to clarify the role of exogenous foliar salicylic acid on alleviating selenium toxicity of pak choi exposed to moderately and highly Se-excessive soils (4 mg·kg⁻¹ Se and 10 mg·kg⁻¹ Se, respectively). The results showed that Se stress caused severe lipid peroxidation, desynchronization of the antioxidant enzymatic system, and significant decreases in the measures of photosynthetic activity and shoot biomass. Under Se stress conditions, exogenous foliar salicylic acid significantly increased measures of photosynthetic activity and shoot biomass, increased catalase activity, and decreased measures of oxidative stress. Moreover, exogenous salicylic acid significantly enhanced Se accumulation in shoots under Se stress conditions. We demonstrate here that foliar spraying with salicylic acid is an effective measure to alleviate the adverse effects of Se stress and enhance Se accumulation for optimizing crop Se biofortification in Se-excessive soil.
Mostrar más [+] Menos [-]Application of beet sugar byproducts improves sugar beet biofortification in saline soils and reduces sugar losses in beet sugar processing
2021
Alotaibi, Fahad | Bamagoos, Atif A. | Ismaeil, Fekry M. | Zhang, Wenying | Abou-Elwafa, Salah Fatouh
Improving the chemical and physical properties of saline soils is crucial for the sustainable production of sugar beet and efficient processing of beet sugar. Here, the impacts of the application of treated filter cake on sugar beet biofortification under saline soil and sugar losses into molasses during beet sugar processing were evaluated for the first time. The application of treated filter cake significantly reduced K%, Na%, and α-amino-N while enhanced sucrose content and quality index of beet root juice. Consequently, sugar loss percentage, sugar loss yield, and relative sugar loss yield were reduced, whereas recoverable sugar yield was enhanced. Linear regression analysis revealed that quality index and sugar loss yield were increased, whereas sugar loss percentage and relative sugar loss yield were reduced in response to the reduction of soil Na⁺ content accompanied with increasing Ca²⁺ content in the soil increased. The results provide treated filter cake as a promising amendment for saline soil remediation for improving biofortification of sugar beet and reducing sugar losses during beet sugar processing.
Mostrar más [+] Menos [-]Determination the Usefulness of AhHMA4p1::AhHMA4 Expression in Biofortification Strategies
2016
Weremczuk, Aleksandra | Barabasz, Anna | Ruszczyńska, Anna | Bulska, Ewa | Antosiewicz, Danuta Maria
AhHMA4 from Arabidopsis thaliana encodes Zn/Cd export protein that controls Zn/Cd translocation to shoots. The focus of this manuscript is the evaluation of AhHMA4 expression in tomato for mineral biofortification (more Zn and less Cd in shoots and fruits). Hydroponic and soil-based experiments were performed. Transgenic and wild-type plants were grown on two dilution levels of Knop’s medium (1/10, 1/2) with or without Cd, to determine if mineral composition affects the pattern of root/shoot partitioning of both metals due to AhHMA4 expression. Facilitation of Zn translocation to shoots of 19-day-old transgenic tomato was noted only when plants were grown in the more diluted medium. Moreover, the expression pattern of Zn-Cd-Fe cross-homeostasis genes (LeIRT1, LeChln, LeNRAMP1) was changed in transgenics in a medium composition-dependent fashion. In plants grown in soil (with/without Cd) up to maturity, expression of AhHMA4 resulted in more efficient translocation of Zn to shoots and restriction of Cd. These results indicate the usefulness of AhHMA4 expression to improve the growth of tomato on low-Zn soil, also contaminated with Cd.
Mostrar más [+] Menos [-]Effect of foliar application of the selenium-rich nutrient solution on the selenium accumulation in grains of Foxtail millet (Zhangzagu 10)
2022
Li, Xiaojun | Sun, Jingjing | Li, Wenshuan | Gong, Zongqiang | Jia, Chunyun | Li, Peijun
The foliar application of selenium (Se) is an effective method for biofortification of Se in crop grains in order to provide sufficient Se for human health. As a staple food in China, the foxtail millet (Setaria italica L.), which had been Se biofortification, would be helpful to overcome Se deficiency in the diet. The Se fertilizer and its application technology are vital for reducing environmental risk while enriching selenium. Hence, the Se-rich nutrient solution developed by ourselves was used, and the effect of its amount and growth stage applied on the accumulation of Se in grains of foxtail millet (Setaria italica L.) was studied in the present study. The results were as follows: (1) the Se concentration in grains increased with the Se application rate increasing, and the highest Se concentration in grains was 1.83 mg kg⁻¹ at the sprayed concentration of 61.5 gSe hm⁻²; (2) the accumulation of Se sprayed in the grain-filling stage was 1.3–1.6 times higher than that in the joint stage; and (3) the organ damage could be found under low Se/S ratio, which happened in the rice leaves when the Se rate was higher than 76.875 gSe m⁻² with the low sulfate application compared with the formulation. This Se-rich nutrient solution could be used to produce the Se-rich millet grains and foliar application in the reproductive stage to produce qualified Se-rich millet.
Mostrar más [+] Menos [-]Advantages and limits to copper phytoextraction in vineyards
2022
Cornu, Jean-Yves | Waterlot, Christophe | Lebeau, Thierry
Copper (Cu) contamination of soils may alter the functioning and sustainability of vineyard ecosystems. Cultivating Cu-extracting plants in vineyard inter-rows, or phytoextraction, is one possible way currently under consideration in agroecology to reduce Cu contamination of vineyard topsoils. This option is rarely used, mainly because Cu phytoextraction yields are too low to significantly reduce contamination due to the relatively “low” phytoavailability of Cu in the soil (compared to other trace metals) and its preferential accumulation in the roots of most extracting plants. This article describes the main practices and associated constraints that could theoretically be used to maximize Cu phytoextraction at field scale, including the use of Cu-accumulating plants grown (i) with acidifying plants (e.g., leguminous plants), and/or (ii) in the presence of acidifying fertilizers (ammonium, elemental sulfur), or (iii) with soluble “biochelators” added to the soil such as natural humic substances or metabolites produced by rhizospheric bacteria such as siderophores, in the inter-rows. This discussion article also provides an overview of the possible ways to exploit Cu-enriched biomass, notably through ecocatalysis or biofortification of animal feed.
Mostrar más [+] Menos [-]