Refinar búsqueda
Resultados 1-10 de 194
Anaerobic treatment of wastewaters from alcohol and yeast factories
1999
Klasnja, M. | Sciban, M. (Univerzitet u Novom Sadu, Novi Sad (Yugoslavia). Tehnoloski fakultet)
Alcohol and yeast production is the most important part of the biotechnological production in Yugoslavia, with annual production of 13 667 867 liters of absolute alcohol and of 20 947 490 kg of yeast in the year 1998. Large environmental load is produced by wastewaters from alcohol and yeast factories (512 000 P.E.), especially by alcohol stillage (BOD 40 000 - 50 000 mg/L). Anaerobic treatment is suitable process for treatment of alcohol stillage, and of yeast factory wastewater. In this paper, effects of treatment process (organic load reduction, energy of produced biogas) are discussed; and potential of anaerobic treatment os wastewaters from Yugoslavia's alcohol and yeast factories is reviewed.
Mostrar más [+] Menos [-]Will open waste burning become India's largest air pollution source? Texto completo
2022
Sharma, Gaurav | Annadate, Saurabh | Sinha, Baerbel
India struggles with frequent exceedances of the ambient air quality standard for particulate matter and benzene. In the past two decades, India has made considerable progress in tackling indoor air pollution, by phasing out kerosene lamps, and pushing biofuel using households towards Liquefied Petroleum Gas (LPG) usage. In this study, we use updated emission inventories and trends in residential fuel consumption, to explore changes in the contribution of different sectors towards India's largest air pollution problem. We find that residential fuel usage is still the largest air pollution source, and that the <10% households using cow dung as cooking fuel contribute ∼50% of the residential PM₂.₅ emissions. However, if current trends persist, residential biofuel usage in India is likely to be phased out by 2035. India's renewable energy policies are likely to reduce emissions in the heat and electricity sector, and manufacturing industries, in the mid-term. PM₂.₅ emissions from open waste burning, on the other hand, hardly changed in the decade from 2010 to 2020. We conclude that without strong policies to promote recycling and upcycling of non-biodegradable waste, and the conversion of biodegradable waste to biogas, open waste burning is likely to become India's largest source of air pollution by 2035. While our study is limited to India, our findings are of relevance for other countries in the global South suffering from similar waste management challenges.
Mostrar más [+] Menos [-]Emission characteristics and assessment of odors from sludge anaerobic digestion with thermal hydrolysis pretreatment in a wastewater treatment plant Texto completo
2021
Han, Zhangliang | Li, Ruoyu | Shen, Hanzhang | Qi, Fei | Liu, Baoxian | Shen, Xiue | Zhang, Lin | Wang, Xiaoju | Sun, Chuanfeng
Anaerobic digestion (AD) with thermal hydrolysis pre-treatment (THP) is an effective sludge treatment method which provides several advantages such as enhanced biogas formation and fertilizer production. The main limitation to THP-AD is that hazardous odors, including NH₃ and volatile sulfur compounds (VSCs), are emitted during the sludge treatment process. In order to develop strategies to eliminate odors, it is necessary to identify the key odors and emissions sites. This study identified production of NH₃ (741.60 g·dry sludge t⁻¹) and VSCs (277.27 g·dry sludge t⁻¹) during sludge AD after THP, and measured emissions in each of the THP-AD sludge treatment sites. Odor intensity, odor active values, permissible concentration-time weighted average, and non-carcinogenic risks were also assessed in order to determine the sensory impact, odor contribution, and health impacts of NH₃ and VSCs. The results revealed that odor pollution existed in all of the test sites, particularly in the sludge pump room and pre-dehydration workshop. NH₃, H₂S, and methyl mercaptan caused very strong odors, and levels of NH₃ and H₂S were enough to impact the health of on-site employees.
Mostrar más [+] Menos [-]Sustainable valorisation pathways mitigating environmental pollution from brewers’ spent grains Texto completo
2021
Kavalopoulos, Michael | Stoumpou, Vasileia | Christofi, Andreas | Mai, Sofia | Barampouti, Elli Maria | Moustakas, Konstantinos | Malamis, Dimitris | Loizidou, Maria
In this work, valorisation pathways of brewers’ spent grains (BSG) towards biofuels production under the biorefinery concept were studied utilizing experimental data that provide a common base for straightforward comparison. The dehydration and the recovery of used oil, bioethanol and biogas from BSG were studied. The process units involved were thoroughly investigated and optimized. The oil extraction efficiency reached up to 70% using solid-liquid extraction process with hexane as solvent. The optimal ethanol yield achieved was 45% after the application of acid pretreatment, enzymatic hydrolysis with CellicCTec2 and fermentation with S. Cerevisiae. As far as biogas potential is concerned, the raw BSG, defatted BSG and stillage presented values equal to 379 ± 19, 235 ± 21 and 168 ± 39 mL biogas/g for respectively. Through the combination of the proposed schemes, three biorefinery scenarios were set up able to produce biodiesel, bioethanol and/or biogas. Material flow diagrams were set up in order to assess these schemes. Given that BSG could ensure ‘green’ energy production in the range of 4.5–7.0 million MJ/y if the European BSG potential is fully valorised, BSG could substantially contribute to the biofuel energy strategy.
Mostrar más [+] Menos [-]Reduction of nitrate using biochar synthesized by Co-Pyrolyzing sawdust and iron oxide Texto completo
2021
Han, Eun-Yeong | Kim, Bo-Kyong | Kim, Hye-Bin | Kim, Jong-Gook | Lee, Jae-Young | Baek, Kitae
Nitrate is the most common contaminant in groundwater in Korea, as well as across the world. Reduction of nitrate to ammonia is one of the options available to remediate groundwater. In this study, nitrate in groundwater was removed using a zero-valent iron (ZVI) containing biochar synthesized by co-pyrolyzing iron oxide and sawdust biomass. Among the various biogases generated during the pyrolysis of biomass, CO and H₂ act as reducing agents to transform iron oxides to ZVI. Approximately 71% of nitrate was reduced to ammonium by ZVI-biochar at initial pH 2.0, and the reduction decreased sharply by the increase in pH. The mass of nitrate-N decreased is exactly same with the mass of ammonia-N formed. However, ammonium remained in the aqueous phase after reduction by ZVI-biochar, and the total nitrogen was not lowered. Acid-washed zeolite adsorbed most ammonium reduced by the ZVI-biochar and maintained the pH to acidic condition to facilitate the reduction of nitrate. The results of this study imply that nitrate-contaminated groundwater can be properly treated within the guidelines of water quality by synthesized ZVI-containing biochar.
Mostrar más [+] Menos [-]Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar Texto completo
2021
Fu, Dun | Kurniawan, Tonni Agustiono | Li, Heng | Wang, Haitao | Wang, Yuanpeng | Li, Qingbiao
A highly efficient, eco-friendly and relatively low-cost catalyst is necessary to tackle bottlenecks in the treatment of industrial wastewater laden with heavy metals and antibiotic such as livestock farm and biogas liquids. This study investigated co-oxidative removal of arsenite (As(III)) and tetracycline (TC) by iron nanoparticles (Fe NP)-impregnated carbons based on heterogeneous Fenton-like reactions. The composites included Fe NP@biochar (BC), Fe NP@hydrochar (HC), and Fe NP@HC-derived pyrolysis char (HDPC). The functions of N and S atoms and the loading mass of the Fe NP in the Fe NP@BC in heterogeneous Fenton-like reactions were studied. To sustain its cost-effectiveness, the spent Fe NP@BC was regenerated using NaOH. Among the composites, the Fe NP@BC achieved an almost complete removal of As(III) and TC under optimized conditions (1.0 g/L of dose; 10 mM H₂O₂; pH 6; 4 h of reaction; As(III): 50 μM; TC: 50 μM). The co-oxidative removal of As(III) and TC by the Fe NP@ BC was controlled by the synergistic interactions between the Fe NPs and the active N and S sites of the BC for generating reactive oxygen species (ROS). After four consecutive regeneration cycles, about 61 and 95% of As(III) and TC removal were attained. This implies that the spent carbocatalyst still has reasonable catalytic activities for reuse. Overall, this suggests that adding technological values to unused biochar as a carbocatalyst like Fe NP@BC was promising for co-oxidative removal of As(III) and TC from contaminated water.
Mostrar más [+] Menos [-]Integrated farming system producing zero emissions and sustainable livelihood for small-scale cattle farms: Case study in the Mekong Delta, Vietnam Texto completo
2020
This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.
Mostrar más [+] Menos [-]Household air pollution and personal exposure to air pollutants in rural China – A review Texto completo
2018
Du, Wei | Li, Xinyue | Chen, Yuanchen | Shen, Guofeng
Solid fuels, an important source of severe Household Air Pollution (HAP) linked to many adverse health outcomes, has been widely consumed around the world. China consumes large amounts of solid fuels and suffers from serious indoor and outdoor air pollution. Though global HAP issues had been reviewed in previous literatures, peer-reviewed Chinese publications were seldom included in those reviews. We conducted a literature review on the studies of HAP and personal exposure in rural China with inputs from peer-reviewed publications in both English and Chinese. A total of 36,572 articles were retrieved, 294 were read in full text, of which 92 were included in final data extraction and in-depth analysis. Although HAP is a very serious issue in China, studies on either HAP or personal exposure assessment were very limited. From existing studies, levels of air pollutants including carbon monoxide, sulfur dioxide, particulate matter (PM), organic carbon, elemental carbon, polycyclic aromatic hydrocarbons (PAHs), etc., in indoor and ambient air were analyzed for their temporal and spatial variations, and the differences across different fuel types were compared. The studies showed that PM and PAHs levels in most rural homes exceeded the World Health Organization (WHO) and Chinese National Standards, especially during the heating season in northern China. Replacing traditional fuels with cleaner ones (such as liquid petroleum gas (LPG), biogas or electricity) was considered as the most appropriate way to mitigate HAP. The daily exposure to PM and PAHs from using LPG, biogas or electricity was considerably lower than that from using traditional solid fuels. However, the level was still higher than the guideline values for PM and PAHs set by WHO to protect human health. To achieve a more effective control, the current data gap need to be closed and suggestions for future research were discussed in this review.
Mostrar más [+] Menos [-]Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion Texto completo
2021
Gohar, Ali | Ling, Zhenmin | Saif, Irfan | ʻUs̲mān, Muḥammad | Jalalah, Mohammed | Harraz, Farid A. | Al-Assiri, M.S. | Salama, Sayed | Li, Xiangkai
Anaerobic digestion, a promising technology for waste utilization and bioenergy generation, is a suitable approach to convert the shrimp waste to biomethane, reducing its environmental impact. In this study, shrimp chaff (SC) was co-digested corn straw (CS), wheat straw (WS), and sugarcane bagasse (SB). In co-digestion, SC enhanced biomethane production of CS by 8.47-fold, followed by SC + WS (5.67-folds), and SC + SB (3.37-folds). SC addition to agricultural biomass digestion also promoted the volatile solids removal up to 85%. Microbial community analysis of SC and CS co-digestion presented the dominance of phylum Bacteroidetes, Firmicutes, Proteobacteria, and Euryarchaeota. Proteolytic bacteria were dominant (18.02%) during co-digestion of SC and CS, with Proteiniphilum as major bacterial genera (14%) that converts complex proteinaceous substrates to organic acids. Among the archaeal community, Methanosarcina responsible for conversion of acetate and hydrogen to biomethane, increased up to 70.77% in SC and CS digestion. Addition of SC to the digestion of agricultural wastes can significantly improve the biomethane production along with its effective management to reduce environmental risks.
Mostrar más [+] Menos [-]Co-application of biogas slurry and hydrothermal carbonization aqueous phase substitutes urea as the nitrogen fertilizer and mitigates ammonia volatilization from paddy soil Texto completo
2021
Li, Detian | Cheng, Yueqin | Li, Tianling | Sun, Haijun | Xue, Lihong | Cui, Hongbiao | Feng, Yanfang | Yang, Linzhang | Chu, Qingnan
Biogas slurry (BS) and bio-waste hydrothermal carbonization aqueous phase (HP) are nutrient-rich wastewater. To prevent environment contamination, transforming BS and HP into synthetic fertilizers in the agricultural field can potentially realize resource utilization. We hypothesized that acidic HP could neutralize alkaline BS, adjusting floodwater pH from 6.88 to 8.00 and mitigating ammonia (NH₃) volatilization from the paddy soil. In this soil column study, the mixture of BS and HP was applied to paddy soil to substitute 50%, 75%, and 100% to urea. With a low (L) or high (H) ratio of HP, treatments were labeled as BCL50, BCL75, BCL100, BCH50, BCH75, and BCH100. Results showed that microbial byproduct- and fulvic acid-like substance were the main components in BS and HP using 3D-EEM analysis, respectively. Co-application of BS and HP mitigated the NH₃ volatilization by 4.2%–65.5% compared with CKU. BCL100 and BCH100 treatments significantly (P < 0.05) mitigated NH₃ volatilization by 65.5% and 56.8%, which also significantly (P < 0.05) mitigated the yield-scale NH₃ volatilization by 49.6% and 42.3%, compared with CKU. The low NH₄⁺-N concentration and pH value in floodwater were the main reason explained the NH₃ mitigation. Therefore, this study demonstrated that BS and HP co-application can substitute the urea as a valuable N fertilizer in a rational rate and meanwhile mitigate the NH₃ volatilization. This study will provide new ideas for the utilization of BS and HP resources in the context of ammonia mitigation.
Mostrar más [+] Menos [-]