Refinar búsqueda
Resultados 1-10 de 221
Anthropogenic nitrate attenuation versus nitrous oxide release from a woodchip bioreactor
2022
White, Shane A. | Morris, Shaun A. | Wadnerkar, Praktan D. | Woodrow, Rebecca L. | Tucker, James P. | Holloway, Ceylena J. | Conrad, Stephen R. | Sanders, Christian J. | Hessey, Samantha | Santos, Isaac R.
Nitrogen loss via overland flow from agricultural land use is a global threat to waterways. On-farm denitrifying woodchip bioreactors can mitigate NO₃⁻ exports by increasing denitrification capacity. However, denitrification in sub-optimal conditions releases the greenhouse gas nitrous oxide (N₂O), swapping the pollution from aquatic to atmospheric reservoirs. Here, we assess NO₃⁻-N removal and N₂O emissions from a new edge-of-field surface-flow bioreactor during ten rain events on intensive farming land. Nitrate removal rates (NRR) varied between 5.4 and 76.2 g NO₃⁻-N m⁻³ wetted woodchip d⁻¹ with a mean of 30.3 ± 7.3 g NO₃⁻-N m⁻³. The nitrate removal efficiency (NRE) was ∼73% in ideal hydrological conditions and ∼18% in non-ideal conditions. The fraction of NO₃⁻-N converted to N₂O (rN₂O) in the bioreactor was ∼3.3 fold lower than the expected 0.75% IPCC emission factor. We update the global bioreactor estimated Q₁₀ (NRR increase every 10 °C) from a recent meta-analysis with previously unavailable data to >20 °C, yielding a new global Q₁₀ factor of 3.1. Mean N₂O CO₂-eq emissions (431.9 ± 125.4 g CO₂-eq emissions day⁻¹) indicate that the bioreactor was not significantly swapping aquatic NO₃⁻ for N₂O pollution. Our estimated NO₃⁻-N removal from the bioreactor (9.9 kg NO₃⁻-N ha⁻¹ yr⁻¹) costs US$13.14 per kg NO₃⁻-N removed and represents ∼30% NO₃⁻-N removal when incorporating all flow and overflow events. Overall, edge-of-field surface-flow bioreactors seem to be a cost-effective solution to reduce NO₃⁻-N runoff with minor pollution swapping to N₂O.
Mostrar más [+] Menos [-]Bioaugmented removal of 17β-estradiol, nitrate and Mn(II) by polypyrrole@corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response
2022
Gao, Zhihong | Ali, Amjad | Su, Junfeng | Chang, Qiao | Bai, Yihan | Wang, Yue | Liu, Yu
The coexistence of nitrate and endocrine substances (EDCs) in groundwater is of global concern. Herein, an efficient and stable polypyrrole@corn cob (PPy@Corn cob) bioreactor immobilized with Zoogloea sp. was designed for the simultaneous removal of 17β-estradiol (E2), nitrate and Mn(II). After 225 days of continuous operation, the optimal operating parameters and enhanced removal mechanism were explored, also the long-term toxicity and microbial communities response mechanisms under E2 stress were comprehensively evaluated. The results showed that the removal efficiencies of E2, nitrate, and Mn(II) were 84.21, 82.96, and 47.91%, respectively, at the optimal operating conditions with hydraulic retention time (HRT) of 8 h, pH of 6.5 and Mn(II) concentration of 20 mg L⁻¹. Further increased of initial E2 (2 and 3 mg L⁻¹) resulted in the inhibiting effect of denitrification and manganese oxidation, but excellent E2 removal efficiencies maintained, which were associated with the formation and continuous accumulation of biomanganese oxides (BMO). Characterization analysis of biological precipitation demonstrated that adsorption and redox conversion on the BMO surface played key roles in the removal of E2. In addition, different levels of E2 exposure are decisive factors in community evolution, and bioaugmented bacterial communities with Zoogloea as the core group can dynamically adapt to E2 stress. This study offers the possibility to better utilize microbial metabolism and to advance opportunities that depend on microbial physiology and material characterization applications.
Mostrar más [+] Menos [-]Multifaceted roles of microalgae in the application of wastewater biotreatment: A review
2021
Chai, Wai Siong | Tan, Wee Gee | Halimatul Munawaroh, Heli Siti | Gupta, Vijai Kumar | Ho, Shih-Hsin | Show, Pau Loke
Microalgae have become imperative for biological wastewater treatment. Its capability in biological purification of wastewaters from different origins while utilizing wastewater as the substrate for growth has manifest great potentials as a sustainable and economical wastewater treatment method. The wastewater grown microalgae have also been remarked in research to be a significant source of value-added bioproducts and biomaterial. This paper highlights the multifaceted roles of microalgae in wastewater treatment from the extent of microalgal bioremediation function to environmental amelioration with the involvement of microalgal biomass productivity and carbon dioxide fixation. Besides, the uptake mechanism of microalgae in wastewater treatment was discussed in detail with illustrations for a comprehensive understanding of the removal process of undesirable substances. The performance of different microalgae species in the uptake of various substances was studied and summarized in this review. The correlation of microalgal treatment efficacy with various algal strain types and the bioreactors harnessed for cultivation systems was also discussed. Studies on the alternatives to conventional wastewater treatment processes and the integration of microalgae with accordant wastewater treatment methods are presented. Current research on the biological and technical approaches for the modification of algae-based wastewater system and the maximization of biomass production is also reviewed and discussed. The last portion of the review is dedicated to the assertion of challenges and future perspectives on the development of microalgae-based wastewater treatment technology. This review serves as a useful and informative reference for readers regarding the multifaceted roles of microalgae in the application of wastewater biotreatment with detailed discussion on the uptake mechanism.
Mostrar más [+] Menos [-]Social microbial inocula confer functional stability in a methyl tert-butyl ether extractive membrane biofilm bioreactor
2019
Purswani, Jessica | Guisado, Isabel M. | Coello-Cabezas, Julio | Gonzalez-López, Jesús | Pozo, Clementina
Methyl tert-butyl ether (MTBE) degradation technologies based on two-phase partitioning systems such as extractive membrane biofilm reactors (EMBFR) permit separation of biological and contaminant compartments, thus allowing optimization of the biological section. In this study, we set-up an EMBFR with three MTBE-degrading and cooperating strains (termed social biofilm: Agrobacterium sp. MS2, Paenibacillus etheri SH7ᵀ and Rhodococcus ruber EE6). The removal efficiency of the social-biofilm EMBFR was 80%, and functional stability was observed in the reactor, i.e. more efficient than previous studies (single-strain inoculated EMBFR, <50% removal efficiency and unstable function). Metabolite tert-butyl alcohol was not observed, and the EC₅₀ values were higher than those observed in single-strain EMBFRs. Comparative analysis of the MTBE enzymatic pathway and the social-biofilm was performed, where the mechanism of cooperation observed within the social-biofilm is likely due to enzymatic redundancy. Functional outcomes were equal to previous batch tests, hence 100% scalability was obtained. Overall, higher functional and stability outcomes are obtained with the use of the social-biofilm in an MTBE-EMBFR.
Mostrar más [+] Menos [-]Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices
2017
Schiavon, Marco | Martini, Luca Matteo | Corrà, Cesare | Scapinello, Marco | Coller, Graziano | Tosi, P. (Paolo) | Ragazzi, Marco
The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1.
Mostrar más [+] Menos [-]Paddy field – A natural sequential anaerobic–aerobic bioreactor for polychlorinated biphenyls transformation
2014
Chen, Chen | Yu, Chunna | Shen, Chaofeng | Tang, Xianjin | Qin, Zhihui | Yang, Kai | Hashmi, Muhammad Zaffar | Huang, Ronglang | Shi, Huixiang
The environmental pollution and health risks caused by the improper disposal of electric and electronic waste (e-waste) have become urgent issues for the developing countries. One of the typical pollutants, polychlorinated biphenyls (PCBs), is commonly found in farmland in Taizhou, a major hotspot of e-waste recycling in China. This study investigated the amount of PCB residue in local farmlands. Biotransformation of PCBs was further studied under different water management conditions in paddy field with or without rice cultivation, with a special focus on the alternating flooded and drying processes. It was found that paddy field improved the attenuation of PCBs, especially for highly chlorinated congeners. In the microcosm experiment, 40% or more of the initial total PCBs was removed after sequential flood–drying treatments, compared to less than 10% in the sterilized control and 20% in the constant-drying system. Variation in the quantity of PCBs degrading and dechlorinating bacterial groups were closely related to the alteration of anaerobic–aerobic conditions. These results suggested that alternating anoxic–oxic environment in paddy field led to the sequential aerobic–anaerobic transformation of PCBs, which provided a favorable environment for natural PCB attenuation.
Mostrar más [+] Menos [-]Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: Mechanism of BPA removal and membrane fouling
2013
Seyhi, Brahima | Drogui, Patrick | Buelna, Gerardo | Azaïs, Antonin | Heran, Marc
A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH4–N, PO4–P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m3/d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m3/d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h−1. During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface.
Mostrar más [+] Menos [-]Biodegradation of 17α-ethinylestradiol by heterotrophic bacteria
2013
Larcher, Simone | Yargeau, Viviane
The presence of the synthetic estrogen 17α-ethinylestradiol (EE2) in the environment is of increasing concern due to the endocrine disruption of aquatic organisms. Incomplete removal from wastewater (WW) is one of the main sources of EE2 in aquatic ecosystems, thus improving processes like biological WW treatment/activated sludge (AS) is becoming significantly important. There are opposing results regarding EE2 biodegradability by AS; one discrepancy is the efficacy of heterotrophic bacteria. This research demonstrated the ability of heterotrophs commonly present in AS (B. subtilis, P. aeruginosa, P. putida, R. equi, R. erythropolis, R. rhodochrous, R. zopfii) to remove EE2. R. rhodochrous was the most successful with no detectable EE2 after 48 h; the other bacteria achieved 21%–61% EE2 removal. No additive or synergistic effects were observed due to the combination of the bacterial cultures with maximum EE2 removals of 43% after 300 h.
Mostrar más [+] Menos [-]Adverse effects of erythromycin on the structure and chemistry of activated sludge
2010
Louvet, J.N. | Giammarino, C. | Potier, O. | Pons, M.N.
This study examines the effects of erythromycin on activated sludge from two French urban wastewater treatment plants (WWTPs). Wastewater spiked with 10 mg/L erythromycin inhibited the specific evolution rate of chemical oxygen demand (COD) by 79% (standard deviation 34%) and the specific N–NH4+ evolution rate by 41% (standard deviation 25%). A temporary increase in COD and tryptophan-like fluorescence, as well as a decrease in suspended solids, were observed in reactors with wastewater containing erythromycin. The destruction of activated sludge flocs was monitored by automated image analysis. The effect of erythromycin on nitrification was variable depending on the sludge origin. Erythromycin inhibited the specific nitrification rate in sludge from one WWTP, but increased the nitrification rate at the other facility. Erythromycin toxicity on activated sludge is expected to reduce pollution removal.
Mostrar más [+] Menos [-]Effects of long-term perfluorooctane sulfonate (PFOS) exposure on activated sludge performance, composition, and its microbial community
2022
Lu, Bianhe | Qian, Jin | He, Fei | Wang, Peifang | He, Yuxuan | Tang, Sijing | Tian, Xin
The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 μg L-1) and high (1000 μg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.
Mostrar más [+] Menos [-]