Refinar búsqueda
Resultados 1-10 de 258
Removal of Congo Red by Waste Fish Scale: Isotherms, Kinetics, Thermodynamics and Optimization Studies Texto completo
2024
Roy, Tapas | Mondal, Anupam | Mondal, Naba Kumar
Cong-red dye is a precursor of various products of cotton industry and its toxicity in the aquatic environment is a great concern. Present study was highlighted on the efficacy of the fish scale char (FSC) towards removal of congo red from aqueous solution. The prepared FSC was characterized by zero point charge (pHZPC), scanning electron micrograph with elemental analysis (SEM-EDX) and fourier transform infrared (FTIR). Based in the equilibrium and kinetic study, the Langmuir (R2 = 0.967) and Pseudo-second-order (R2 = 1.00) models are appropriate to describe the dye adsorption process. The randomness and exothermic nature of the system were confirmed by the negative values of both entropy and enthalpy, respectively. Finally, optimization by Response Surface Methodology (RSM) study revealed that the experimental data were nicely fitted with central composite design with very high F value (F = 1596.24, p < 0.0001). Perturbation plot suggested that congo-red dye removal is more sensitive with respect to biosorbent dose, pH and initial concentration. The exhausted adsorbent was regenerated with 0.5(M) NaOH solution. Therefore, it can be concluded that fish scale char could be a valuable materials towards purification of industrial effluent.
Mostrar más [+] Menos [-]Biochar Derived from the Husk and Straw of Rice (Oryza sativa L.) Produced via Low-Temperature Pyrolysis as an Effective Adsorbent for Pb (II) Removal Texto completo
2023
Chaijak, Pimprapa | Michu, Panisa | Thipraksa, Junjira | Kongthong, Alisa
Pyrolysis is a promising thermochemical conversion process that transforms biomass into biochar, a carbon-rich solid material, in an oxygen-limited environment. This study focuses on the utilization of rice byproducts, namely rice straw and rice husk as feedstock for biochar production through low-temperature pyrolysis. The aim is to explore the potential of these biochars as cost-effective adsorbents for removing metal contaminants from aqueous solutions, with a particular emphasis on Pb(II) removal. Physicochemical properties of the biochars produced at a low temperature of 300 °C were thoroughly investigated, including surface morphology and their adsorption capacity for Pb(II). Remarkably, the rice straw biochar (RSB) produced at 300 °C exhibited exceptional Pb(II) adsorption capacity, with a value of 390.10±0.30 mg/g, and demonstrated a high Pb(II) removal efficiency of 96.10±0.30% when modified with 30% w/w H2O2. A crucial aspect of this study lies in the evaluation of the cost-effectiveness of the biochar production process, particularly when compared to commercially available adsorbents. By demonstrating the potential of rice byproduct-derived biochar as an efficient Pb(II) biosorbent in aqueous environments, this work not only provides new insights into the preparation of biochar using low-temperature pyrolysis but also offers a viable and economical solution for metal-contaminated water treatment. The findings of this research contribute to the field of sustainable waste utilization and highlight the significant potential of rice byproduct-based biochar as an environmentally friendly adsorbent for heavy metal removal.
Mostrar más [+] Menos [-]Biofilm Formation by the Hexavalent Chromium Removing Strain Streptococcus salivarius: in Vitro Approach on Abiotic Surfaces Texto completo
2020
Ait-Meddour, A. | Abbas, N. | Ouled-Haddar, H. | Sifour, M. | Bendjeddou, K. | Idoui, T.
In this study, a strain of lactic acid bacteria Streptococcus salivarius was studied for its capacity to remove hexavalent chromium (Cr (VI)) from a liquid medium and to form biofilm. Both properties are useful for using the strain in bioremediation of metal-contaminated effluents. For biofilm formation capacity, three methods were used: the tube method (TM), the Congo red agar method (CRA) and adherence to polystyrene tissue culture plate method (TCP). S. salivarius, showed a positive-biofilm and a correlation between the three methods was noted. The bacterial surface hydrophobicity was studied using the microbial adhesion to solvents method (MATS). On AISI-316 L stainless steel, the strain with a hydrophobic surface showed a good adhesion on this support after 18 h incubation. The colonization of the supports and the biofilms formation by the bacterial cell was observed using scanning electron microscopy (SEM). The minimum inhibitory concentration (MIC) of Cr(VI) on S. salivarius was determined on MRS broth, it was relatively high and equal to 400mg/l. In addition, it displayed a remarkable capacity to reduce Cr(VI) concentration on the liquid medium containing initially 50 mg/l of Cr(VI) ; the percent removal rate was equal to approximately 42% after 72 h of incubation at 37 °C. In addition to its GRAS status, the obtained results suggested that S. salivarius could be successfully used in Cr(VI) bioremediation.
Mostrar más [+] Menos [-]Biosorption Capacity for Cadmium of Brown Seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California Texto completo
2011
MONICA PATRON PRADO | MARIA MARGARITA CASAS VALDEZ | Elisa Serviere Zaragoza | TANIA ZENTENO SAVIN | Daniel Bernardo Lluch Cota | Lía Celina Méndez Rodríguez
"Brown algae Sargassum sinicola and Sargassum lapazeanum were tested as cadmium biosorbents in coastal environments close to natural and enriched areas of phosphorite ore. Differences in the concentration of cadmium in these brown algae were found, reflecting the bioavailability of the metal ion in seawater at several sites. In the laboratory, maximum biosorption capacity (q max) of cadmium by these nonliving algae was determined according to the Langmuir adsorption isotherm as 62.42 ± 0.44 mg g−1 with the affinity constant (b) of 0.09 and 71.20 ± 0.80 with b of 0.03 for S. sinicola and S. lapazeanum, respectively. Alginate yield was 19.16 ± 1.52% and 12.7 ± 1.31%, respectively. Although S. sinicola had far lower biosorption capacity than S. lapazeanum, the affinity for cadmium for S. sinicola makes this alga more suitable as a biosorbent because of its high q max and large biomass on the eastern coast of the Baja California Peninsula. Sargassum biomass was estimated at 180,000 t, with S. sinicola contributing to over 70%."
Mostrar más [+] Menos [-]Copper and Cadmium Biosorption by Dried Seaweed Sargassum sinicola in Saline Wastewater Texto completo
2010
MONICA PATRON PRADO | BAUDILIO ACOSTA VARGAS | Elisa Serviere Zaragoza | Lía Celina Méndez Rodríguez
"Rates of biosorption of cadmium and copper ions by nonliving biomass of the brown macroalga Sargassum sinicola under saline conditions were studied. Batch experiments show that the ability to remove cadmium is significantly diminished (from 81.8% to 5.8%), while the ability to remove copper remains high (from 89% to 80%) at a range of salinity from 0 to 40 psu. Maximum capacity of biosorption at 35 psu was 3.44 mg g−1 for cadmium and 116 mg g−1 for copper. The presence of salt did not significantly affect the rate of biosorption, which was about 90% of saturation in 60 min for both metals. There is an antagonistic effect on biosorption when both metals are present in the solution."
Mostrar más [+] Menos [-]Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents Texto completo
2020
Plant-derived materials as environmentally friendly biosorbents to remove heavy metals from wastewater have been extensively studied. However, the chemical oxygen demand (COD) increase caused by the plant-derived biosorbent has not been considered previously. In this study, water hyacinth was used as biosorbent to remove Cd(II) from wastewater. About 66% of Cd(II) was removed by the biosorbent with a maximum biosorption capacity (qₘₐₓ) of 21.6 mg g⁻¹. However, the COD of the filtrate increased from 0 to 292 mg L⁻¹ during this process. Subsequently, endophytes, microalgae and the microalgae-endophyte symbiotic system (MESS) were assessed for the simultaneous Cd(II) and COD removal. Among these three systems, the MESS achieved the best performance. After 3 d of inoculation, the extent of total Cd(II) removal increased to 99.2% while COD decreased to 77 mg L⁻¹. This study provides a new insight into the application of a plant-derived biosorbent in combination with microalgae and endophytes for the effective treatment of heavy metal-bearing wastewater.
Mostrar más [+] Menos [-]The improved methods of heavy metals removal by biosorbents: A review Texto completo
2020
Qin, Huaqing | Hu, Tianjue | Zhai, Yunbo | Lu, Ningqin | Aliyeva, Jamila
For decades, a vast array of innovative biosorbents have been found out and used in the removal of heavy metals, including bacteria, algae and fungi, etc. Although extensive biological species have been tried as a biosorbent for heavy metals removal, for removal efficiency or economy efficiency limited, it has failed to make a substantial breakthrough in practical application. Thus, many improved methods based on biosorbents emerged. In this review, based on the literature and our research results, we highlight three types of novel methods for biosorbents removal of heavy metals: chemical modification of biosorbents; biomass and chemical materials combination; multiple biomass complex systems. We mainly focus on their configuration, biosorption performance, their creation method, regeneration/reuse, their application and development in the future. Through the comparative analysis of various methods, we think that intracellular autogenous nanomaterials may open up another window in biosorption of heavy metals area. At the same time, the combination of various treatment methods will be the development tendency of heavy metal pollution treatment in the future.
Mostrar más [+] Menos [-]Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species Texto completo
2019
Hamed, Seham M. | Hassan, Sherif H. | Selim, Samy | Kumar, Amit | Khalaf, Sameh M.H. | Wadaan, Mohammed A.M. | Hozzein, Wael N. | AbdElgawad, Hamada
Phycoremediation technologies significantly contribute to solving serious problems induced by heavy metals accumulation in the aquatic systems. Here we studied the mechanisms underlying Al stress tolerance in two diazotrophic cyanobacterial species, to identify suitable species for Al phycoremediation. Al uptake as well as the physiological and biochemical responses of Anabaena laxa and Nostoc muscorum to 7 days Al exposure at two different concentrations i.e., mild (100 μM) and high dose (200 μM), were investigated. Our results revealed that A. laxa accumulated more Al, and it could acclimatize to long-term exposure of Al stress. Al induced a dose-dependent decrease in photosynthesis and its related parameters e.g., chlorophyll content (Chl a), phosphoenolpyruvate carboxylase (PEPC) and Ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo) activities. The affect was less pronounced in A. laxa than N. muscorum. Moreover, Al stress significantly increased cellular membrane damage as indicated by induced H₂O₂, lipid peroxidation, protein oxidation, and NADPH oxidase activity. However, these increases were lower in A. laxa compared to N. muscorum. To mitigate the impact of Al stress, A. laxa induced its antioxidant defense system by increasing polyphenols, flavonoids, tocopherols and glutathione levels as well as peroxidase (POX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) enzymes activities. On the other hand, the antioxidant increases in N. muscorum were only limited to ascorbate (ASC) cycle. Overall, high biosorption/uptake capacity and efficient antioxidant defense system of A. laxa recommend its feasibility in the treatment of Al contaminated waters/soils.
Mostrar más [+] Menos [-]Design and optimization of a new reactor based on biofilm-ceramic for industrial wastewater treatment Texto completo
2019
Beni, Ali Aghababai | Esmaeili, Akbar
A biofilm reactor was designed with flat ceramic substrates to remove Co(II), Ni(II) and Zn(II) from industrial wastewater. The ceramics were made of clay and nano-rubber with high mechanical resistance. The surface of the ceramic substrate was modified with neutral fiber and nano-hydroxyapatite. A uniform and stable biofilm mass of 320 g with 2 mm of thickness was produced on the modified ceramic after 3 d. The micro-organisms were identified in the biofilm by polymerase chain reaction (PCR) method. Functional groups of biofilms were identified with a Fourier transform infrared spectrometer (FT-IR). Experiments were designed by central composite design (CCD) using the responsive surface method (RSM). The biosorption process was optimized at pH = 5.8, temperature = 22 °C, feed flux of heavy metal wastewater = 225 ml, substrate flow = 30 ml, and retention time = 7.825 h. The kinetic data was analyzed by pseudo first-order and pseudo second-order kinetic models. Isotherm models and thermodynamic parameters were applied to describe the biosorption equilibrium data of the metal ions on the biofilm-ceramic. The maximum biosorption efficiency and capacity of heavy metal ions were about 72% and 57.21 mg, respectively.
Mostrar más [+] Menos [-]Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6 Texto completo
2018
Ma, Zhao | Liu, Juan | Dick, Richard P. | Li, Hui | Shen, Di | Gao, Yanzheng | Waigi, Michael Gatheru | Ling, Wanting
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L−1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L−1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L−1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
Mostrar más [+] Menos [-]