Refinar búsqueda
Resultados 1-10 de 39
Synthesis and applications of bismuth-impregnated biochars originated from spent coffee grounds for efficient adsorption of radioactive iodine: A mechanism study
2022
Kwak, Jinwoo | Lee, Sang-Ho | Shin, Jaegwan | Lee, Yong-Gu | Kim, Sangwon | Son, Changgil | Ren, Xianghao | Shin, Jae-Ki | Park, Yongeun | Chon, Kangmin
The adsorption of radioactive iodine, which is capable of presenting high mobility in aquatic ecosystems and generating undesirable health effects in humans (e.g., thyroid gland dysfunction), was comprehensively examined using pristine spent coffee ground biochar (SCGB) and bismuth-impregnated spent coffee ground biochar (Bi@SCGB) to provide valuable insights into the variations in the adsorption capacity and mechanisms after pretreatment with Bi(NO₃)₃. The greater adsorption of radioactive iodine toward Bi@SCGB (adsorption capacity (Qₑ) = 253.71 μg/g) compared to that for SCGB (Qₑ = 23.32 μg/g) and its reduced adsorption capability at higher pH values provide evidence that the adsorption of radioactive iodine with SCGB and Bi@SCGB is strongly influenced by the presence of bismuth materials and the electrostatic repulsion between their negatively charged surfaces and negatively charged radioactive iodine (IO₃⁻). The calculated R² values for the adsorption kinetics and isotherms support that chemisorption plays a crucial role in the adsorption of radioactive iodine by SCGB and Bi@SCGB in aqueous phases. The adsorption of radioactive iodine onto SCGB was linearly correlated with the contact time (h¹/²), and the diffusion of intra-particle predominantly determined the adsorption rate of radioactive iodine onto Bi@SCGB (Cₛₜₐgₑ II (129.20) > Cₛₜₐgₑ I (42.33)). Thermodynamic studies revealed that the adsorption of radioactive iodine toward SCGB (ΔG° = −8.47 to −7.83 kJ/mol; ΔH° = −13.93 kJ/mol) occurred exothermically and that for Bi@SCGB (ΔG° = −15.90 to −13.89 kJ/mol; ΔH° = 5.88 kJ/mol) proceeded endothermically and spontaneously. The X-ray photoelectron spectroscopy (XPS) analysis of SCGB and Bi@SCGB before and after the adsorption of radioactive iodine suggest the conclusion that the change in the primary adsorption mechanism from electrostatic attraction to surface precipitation upon the impregnation of bismuth materials on the surfaces of spent coffee ground biochars is beneficial for the adsorption of radioactive iodine in aqueous phases.
Mostrar más [+] Menos [-]An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga
2016
Kearns, James | Turner, Andrew
Bismuth is a heavy metal whose biogeochemical behaviour in the marine environment is poorly defined. In this study, we exposed three different species of macroalga (the chlorophyte, Ulva lactuca, the phaeophyte, Fucus vesiculosus, and the rhodophyte, Chondrus crispus) to different concentrations of Bi (up to 50 μg L⁻¹) under controlled, laboratory conditions. After a period of 48-h, the phytotoxicity of Bi was measured in terms of chlorophyll fluorescence quenching, and adsorption and internalisation of Bi determined by ICP after EDTA extraction and acid digestion, respectively. For all algae, both the internalisation and total accumulation of Bi were proportional to the concentration of aqueous metal. Total accumulation followed the order: F. vesiculosus > C. crispus > U. lactuca; with respective accumulation factors of about 4200, 1700 and 600 L kg⁻¹. Greatest internalisation (about 33% of total accumulated Bi) was exhibited by C. crispus, the only macroalga to display a phytotoxic response in the exposures. A comparison of the present results with those reported in the literature suggests that Bi accumulation by macroalgae is significantly lower than its accumulation by marine plankton (volume concentration factors of 10⁵ to 10⁷), and that the phytotoxicity of Bi is low relative to other heavy metals like Ag and Tl.
Mostrar más [+] Menos [-]Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure
2015
Hinwood, A.L. | Stasinska, A. | Callan, A.C. | Heyworth, J. | Ramalingam, M. | Boyce, M. | McCafferty, P. | Odland, J.Ø
Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.
Mostrar más [+] Menos [-]Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from Bahía Concepción, Gulf of California
2018
Leal-Acosta, María Luisa | Shumilin, Evgueni | Mirlean, Nicolai | Baturina, Elena Lounejeva | Sánchez-Rodríguez, Ignacio | Delgadillo-Hinojosa, Francisco | Borges-Souza, José
We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, Corg, S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment.
Mostrar más [+] Menos [-]Accumulation features of trace elements in mass-stranded harbor seals (Phoca vitulina) in the North Sea coast in 2002: The body distribution and association with growth and nutrition status
2011
Agusa, Tetsuro | Yasugi, Shin-ya | Iida, Asami | Ikemoto, Tokutaka | Anan, Yasumi | Kuiken, Thijs | Osterhaus, Albert D.M.E. | Tanabe, Shinsuke | Iwata, Hisato
Body distribution and growth- and nutritional status-dependent accumulation of 21 trace elements were investigated in harbor seals (Phoca vitulina) stranded in the North Sea coast in 2002. Higher concentrations and burdens of Mn, Se, Mo, Ag, Sn, Hg, and Bi in the liver, Cd in the kidney, As in the blubber, and Co, Sr, and Ba in the bone were observed. Significant positive correlations of hepatic Se, Mo, Ag, Cd, Sn, Hg, Tl, and Bi with standard body length were found, while significant negative relationships were detected for Mn, As, Rb, Sr, and Sb in the liver. Concentrations of Co, Se, Sr, Sn, Hg, and Bi in the liver, V, Sr, Ag, Sn, and Hg in the kidney, V, Mn, Co, Rb, Sr, Sn, Ba, and Pb in the blubber increased with decreasing blubber thickness of harbor seals, indicating enrichment of these elements in the target tissue by emaciation.
Mostrar más [+] Menos [-]Microplastics as vectors of metals contamination in Mediterranean Sea
2022
Squadrone, Stefania | Pederiva, Sabina | Bezzo, Tabata | Sartor, Rocco Mussat | Battuello, Marco | Nurra, Nicola | Griglione, Alessandra | Brizio, Paola | Abete, Maria Cesarina
Microplastics are contaminants of great concern all over the world. Microplastics constitute pollutants themselves; moreover, other contaminants such as metals are easily absorbed on their plastic surface, becoming bioavailable to marine biota such as zooplankton.We collected marine zooplankton from Mediterranean Sea to investigate trace elements associated with microplastics. Samples were subjected to visual sorting by a stereomicroscope, collected with sterile tweezers, pooled and subjected to sonication, filtration, and drying before being subjected to acid extraction. An ICP-MS was utilized for multi-elemental determination.Aluminum, iron, chromium, zinc, nickel, molybdenum, manganese, lead cobalt, and copper were found at concentrations of mg/kg while arsenic, vanadium, rubidium, and cadmium at level of μg kg⁻¹. Other elements such as silver, beryllium, bismuth, selenium, tin, and thallium were under the limit of quantitation. Lower levels of iron and manganese in samples from Italy were found in comparison to England and Brazil, while aluminum, copper, and zinc registered comparable values. The presence of metals in marine waters is strictly related to sediment lithology and anthropogenic inputs, but plastic plays a key role as vectors for metal ions in the marine system, being able to concentrate metals several order of magnitude higher than in surrounding waters and exerting potential toxicity for living beings after chronic exposure.
Mostrar más [+] Menos [-]One-step synthesis of rod-on-plate like 1D/2D-NiMoO4/BiOI nanocomposite for an efficient visible light driven photocatalyst for pollutant degradation
2022
Bavani, Thirungnanam | Vinesh, Vasudevan | Neppolian, Bernaurdshaw | Murugesan, Sepperumal | Selvaraj, Manickam | Madhavan, Jagannathan
Visible light active 1D/2D-NiMoO₄/BiOI nanocomposite photocatalyst has been constructed by single step solvothermal method. Various compositions of NiMoO₄/BiOI nanocomposites are prepared by loading different amounts of nickel molybdate (NiMoO₄) (1, 2, 3 wt%) to the bismuth oxy iodide (BiOI) and investigated by XRD, FTIR, SEM, EDAX, TEM, UV–vis DRS, and PL analysis. Among the as-prepared photocatalysts, 1 wt% NiMoO₄ incorporated BiOI (NMBI-1) showed superior photocatalytic activity with a rate constant of 0.0442 min⁻¹ for methylene blue degradation. While the bandgap values of pure BiOI and NiMoO₄ are 1.94 and 2.43 eV, respectively, the optimized NMBI-1 exhibited a lower bandgap energy of 1.64 eV, and showed about 2 and 3.7 times higher photodegradation ability than the pure NiMoO₄ and BiOI, respectively, towards MB removal under visible light. The NMBI-1 nanocomposite photocatalyst is stable even after four cycles, indicating an excellent photostability and recyclability. Charge carriers on the interface of NiMoO₄ and BiOI easily transferred via the newly formed heterojunction, thereby increasing the photocatalytic performance. Photochemically formed h⁺ and.OH are found to be the major species in the MB removal under visible light illumination. Therefore, the 1D/2D-NiMoO₄/BiOI nanocomposite photocatalyst materials may be considered for the wastewater remediation processes.
Mostrar más [+] Menos [-]Enhanced photocatalytic activity of Bi2WO6 with PVP addition for CO2 reduction into ethanol under visible light
2021
Ribeiro, Camila Silva | Lansarin, Marla Azário
The conversion of CO₂ into new carbon-based products, such as fuels and chemicals, is an attractive and promising means of mitigating global energy needs and minimizing environmental damage. Although bismuth tungstate (Bi₂WO₆) as a photocatalyst can promote CO₂ photoreduction, a systematic study for the development of a low-cost and efficient catalyst is needed. Thus, Bi₂WO₆ with different morphologies was successfully synthesized using the hydrothermal method. An experimental design was applied to investigate the effect of synthesis time and PVP (polyvinylpyrrolidone) concentration on catalyst photocatalytic activity. Crystal structures, morphologies, optical absorption, and surface charges of the catalysts were characterized by X-ray diffraction, scanning electron microscope, UV–vis diffuse-reflection spectroscopy, nitrogen adsorption, and zeta potential. All samples exhibited good performance for the photoreduction of CO₂ into ethanol, and both time and PVP concentration were significant in the ethanol yield. Changes in synthesis conditions induced differences in catalyst characteristics, such as morphology, crystallinity, and, predominantly, surface area. Furthermore, PVP addition improved photocatalytic efficiency by up to 258% compared with results without the surfactant. The best sample, W-8h-10%, presented a flower-like morphology and ethanol yield of 68.9 μmol g⁻¹ h⁻¹.
Mostrar más [+] Menos [-]Reduced graphene oxide modified Z-scheme AgI/Bi2MoO6 heterojunctions with boosted photocatalytic activity for water treatment originated from the efficient charge pairs partition and migration
2021
Du, Chunyan | Yang, Lu | Tan, Shiyang | Song, Jiahao | Zhang, Zhuo | Wang, Shitao | Xiong, Ying | Yu, Guanlong | Chen, Hong | Zhou, Lu | Wu, Haipeng | Liu, Yuanyuan
In order to enhance degradation of harmful organic pollutants like Rhodamine B (RhB) dye under visible-light irradiation (λ >420 nm), a silver iodide/reduced graphene oxide/bismuth molybdate (AgI/rGO/Bi₂MoO₆) Z-scheme heterojunction photocatalyst was synthesized by a solvothermal process combined with an in-situ precipitation technique. The AgI (15 wt.%)/rGO/Bi₂MoO₆ (AGBMO-15) photocatalyst with a dosage of 0.5 g/L exhibited the highest photocatalytic activity with 98.0% RhB removal under an initial concentration of 10 mg/L within 30 min. This removal rate was approximately 65.8%, 57.7%, and 72.7% higher than that for a rGO/Bi₂MoO₆ (GBMO) binary composite, pure AgI powder, and pristine Bi₂MoO₆ nanoplates, respectively. The novel photocatalyst achieved approximately three times higher photocatalytic degradation within a shorter period of visible-light irradiation than pure Bi₂MoO₆. Through photoluminescence analysis and trapping experiments, this outstanding performance was attributed to the efficient separation of photogenerated electron-hole pairs owing to an internal electric field at the contact interface of AgI and Bi₂MoO₆, which generated more superoxide radical anions (•O₂–) as primary reactive species to promote RhB degradation. Meanwhile, the rGO participated in the capture of visible-light and played a role of solid electronic medium at the AgI/Bi₂MoO₆ interface, which realized an effective Z-scheme electron transfer path, avoided the self oxidation of photocatalyst and prolonged the carrier life. Furthermore, the AGBMO-15 photocatalyst exhibited excellent photocatalytic degradation stability, maintaining an RhB removal rate of 96.2% after four cycles of reuse. Due to its simplicity, reusability, and controllability, the proposed photocatalyst has excellent application potential for the environmental remediation of wastewater.
Mostrar más [+] Menos [-]Fate and Behavior of Bi2O3-BiVO4 in Wastewater Treatment Plant Under an Aerobic System
2019
Majotena, D. N. | Mahlalela, L. C. | Andala, D. M. | Dlamini, L. N.
The use of engineered nanomaterials (ENMs) increases concerns relating to their fate, behavior, and toxicity due to their increased exposure to the environment. These ENMs end up in wastewater treatment plants (WWTPs), and the bacteria in these systems are sensitive to compounds such as heavy metals, which reduces the functionality of the WWTP. In this work, the fate and behavior of Bi₂O₃-BiVO₄ in a WWTP using the OECD 303A guideline was studied. The Bi₂O₃-BiVO₄ NPs were synthesized through a hydrothermal and impregnation method. X-ray diffraction showed monoclinic phases of both Bi₂O₃ and BiVO₄ NPs. The effect of Bi₂O₃-BiVO₄ NPs was monitored using chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD₅). The COD and BOD₅ for the sludge retention time where the NPs were added was > 70%. This showed that the NPs had no effect on the functionality of the treatment processes as it was further affirmed by the TPC measurements. Inductively coupled plasma–optical emission spectroscopy (ICP-OES) showed that the fate of the NPs was through the activated sludge than the effluent, whereby 90% of Bi and V were absorbed in the activated sludge and 10% in the effluent. The results indicate that the NPs have the potential to permeate through the environment segments through the wastewater sludge compared to the effluent. XRD analysis of the test sludge showed that the crystal phases of the heterojunction remained unchanged, and this could ascertain that the treatment conditions did not transform the NPs into toxic forms.
Mostrar más [+] Menos [-]