Refinar búsqueda
Resultados 1-10 de 560
Haematological parameters as predictors of blood lead and indicators of lead poisoning in the black duck (Anas rubripes).
1989
Pain D.J.
Spatial distribution of selenium-mercury in Arctic seabirds Texto completo
2024
Cruz-Flores, Marta | Lemaire, Jérémy | Brault-Favrou, Maud | Christensen-Dalsgaard, Signe | Churlaud, Carine | Descamps, Sébastien | Elliott, Kyle | Erikstad, Kjell Einar | Ezhov, Alexey | Gavrilo, Maria | Grémillet, David | Guillou, Gaël | Hatch, Scott | Per Huffeldt, Nicholas | Kitaysky, Alexander | Kolbeinsson, Yann | Krasnov, Yuri | Langset, Magdalene | Leclaire, Sarah | Linnebjerg, Jannie | Lorentzen, Erlend | Mallory, Mark | Merkel, Flemming | Montevecchi, William | Mosbech, Anders | Patterson, Allison | Perret, Samuel | Provencher, Jennifer | Reiertsen, Tone | Renner, Heather | Strøm, Hallvard | Takahashi, Akinori | Thiebot, Jean-Baptiste | Thórarinsson, Thorkell Lindberg | Will, Alexis | Bustamante, Paco | Fort, Jérôme | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Norwegian Institute for Nature Research (NINA) | Norwegian Polar Institute | Department of Natural Resource Sciences ; McGill University = Université McGill [Montréal, Canada] | Russian Academy of Science | Arctic and Antarctic Research Institute (AARI) ; Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet) | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | National Institute of Polar Research [Tokyo] (NiPR) | Northeast Iceland Nature Research Centre [Húsavík] | ANR-16-CE34-0005,ILETOP,Impact des polluants historiques et émergents sur les prédateurs supérieurs marins de l'Arctique(2016)
International audience | Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial coexposure of Hg and Se in blood samples of two seabird species, the Brünnich’s guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. Inboth oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in internationalmonitoring programs.
Mostrar más [+] Menos [-]Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks Texto completo
2023
Carravieri, Alice | Lorioux, Sophie | Angelier, Frédéric | Chastel, Olivier | Albert, Céline | Bråthen, Vegard Sandøy | Brisson-Curadeau, Émile | Clairbaux, Manon | Delord, Karine | Giraudeau, Mathieu | Perret, Samuel | Poupart, Timothée | Ribout, Cécile | Viricel-Pante, Amélia | Grémillet, David | Bustamante, Paco | Fort, Jérôme | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Norwegian Institute for Nature Research (NINA) | McGill University = Université McGill [Montréal, Canada] | Marine Renewable Energy Ireland (MaREI) | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Station de Biologie Marine de Concarneau ; Direction générale déléguée à la Recherche, à l’Expertise, à la Valorisation et à l’Enseignement-Formation (DGD.REVE) ; Muséum national d'Histoire naturelle (MNHN)-Muséum national d'Histoire naturelle (MNHN) | Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) | ANR-16-CE34-0005,ILETOP,Impact des polluants historiques et émergents sur les prédateurs supérieurs marins de l'Arctique(2016) | ANR-16-TERC-0004,MAMBA,Contamination par le mercure des écosystèmes arctiques : sources, niveaux et impacts(2016) | ANR-20-CE34-0006,ARCTIC-STRESSORS,Effets combinés des stresseurs environnementaux multiples sur les oiseaux marins Arctiques(2020)
Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks Texto completo
2023
Carravieri, Alice | Lorioux, Sophie | Angelier, Frédéric | Chastel, Olivier | Albert, Céline | Bråthen, Vegard Sandøy | Brisson-Curadeau, Émile | Clairbaux, Manon | Delord, Karine | Giraudeau, Mathieu | Perret, Samuel | Poupart, Timothée | Ribout, Cécile | Viricel-Pante, Amélia | Grémillet, David | Bustamante, Paco | Fort, Jérôme | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Norwegian Institute for Nature Research (NINA) | McGill University = Université McGill [Montréal, Canada] | Marine Renewable Energy Ireland (MaREI) | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Station de Biologie Marine de Concarneau ; Direction générale déléguée à la Recherche, à l’Expertise, à la Valorisation et à l’Enseignement-Formation (DGD.REVE) ; Muséum national d'Histoire naturelle (MNHN)-Muséum national d'Histoire naturelle (MNHN) | Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) | ANR-16-CE34-0005,ILETOP,Impact des polluants historiques et émergents sur les prédateurs supérieurs marins de l'Arctique(2016) | ANR-16-TERC-0004,MAMBA,Contamination par le mercure des écosystèmes arctiques : sources, niveaux et impacts(2016) | ANR-20-CE34-0006,ARCTIC-STRESSORS,Effets combinés des stresseurs environnementaux multiples sur les oiseaux marins Arctiques(2020)
International audience | Many animals migrate after reproduction to respond to seasonal environmental changes. Environmental conditions experienced on non-breeding sites can have carryover effects on fitness. Exposure to harmful chemicals can vary widely between breeding and non-breeding grounds, but its carryover effects are poorly studied. Mercury (Hg) contamination is a major concern in the Arctic. Here we quantified winter Hg contamination and its carryover effects in the most abundant Arctic seabird, the little auk Alle. Winter Hg contamination of birds from an East Greenland population was inferred from head feather concentrations. Birds tracked with Global Location Sensors (GLS, N = 28 of the total 92) spent the winter in western and central North Atlantic waters and had increasing head feather Hg concentrations with increasing longitude (i.e., eastward). This spatial pattern was not predicted by environmental variables such as bathymetry, sea-surface temperature or productivity, and needs further investigation. Hg concentrations in head feathers and blood were strongly correlated, suggesting a carryover effect of adult winter contamination on the consequent summer concentrations. Head feather Hg concentrations had no clear association with telomere length, a robust fitness indicator. In contrast, carryover negative effects were detected on chick health, as parental Hg contamination in winter was associated with decreasing growth rate of chicks in summer. Head feather Hg concentrations of females were not associated with egg membrane Hg concentrations, or with egg volume. In addition, parental winter Hg contamination was not related to Hg burdens in chicks’ body feathers. Therefore, we hypothesise that the association between parental winter Hg exposure and the growth of their chick results from an Hg-related decrease in parental care, and needs further empirical evidence. Our results stress the need of considering parental contamination on non-breeding sites to understand Hg trans-generational effects in migrating seabirds, even at low concentrations.
Mostrar más [+] Menos [-]Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks Texto completo
2023
Carravieri, Alice | Lorioux, Sophie | Angelier, Frédéric | Chastel, Olivier | Albert, Céline | Bråthen, Vegard Sandøy | Brisson-curadeau, Émile | Clairbaux, Manon | Delord, Karine | Giraudeau, Mathieu | Perret, Samuel | Poupart, Timothée | Ribout, Cécile | Viricel-pante, Amélia | Grémillet, David | Bustamante, Paco | Fort, Jérôme
Many animals migrate after reproduction to respond to seasonal environmental changes. Environmental conditions experienced on non-breeding sites can have carryover effects on fitness. Exposure to harmful chemicals can vary widely between breeding and non-breeding grounds, but its carryover effects are poorly studied. Mercury (Hg) contamination is a major concern in the Arctic. Here we quantified winter Hg contamination and its carryover effects in the most abundant Arctic seabird, the little auk Alle. Winter Hg contamination of birds from an East Greenland population was inferred from head feather concentrations. Birds tracked with Global Location Sensors (GLS, N = 28 of the total 92) spent the winter in western and central North Atlantic waters and had increasing head feather Hg concentrations with increasing longitude (i.e., eastward). This spatial pattern was not predicted by environmental variables such as bathymetry, sea-surface temperature or productivity, and needs further investigation. Hg concentrations in head feathers and blood were strongly correlated, suggesting a carryover effect of adult winter contamination on the consequent summer concentrations. Head feather Hg concentrations had no clear association with telomere length, a robust fitness indicator. In contrast, carryover negative effects were detected on chick health, as parental Hg contamination in winter was associated with decreasing growth rate of chicks in summer. Head feather Hg concentrations of females were not associated with egg membrane Hg concentrations, or with egg volume. In addition, parental winter Hg contamination was not related to Hg burdens in chicks’ body feathers. Therefore, we hypothesise that the association between parental winter Hg exposure and the growth of their chick results from an Hg-related decrease in parental care, and needs further empirical evidence. Our results stress the need of considering parental contamination on non-breeding sites to understand Hg trans-generational effects in migrating seabirds, even at low concentrations.
Mostrar más [+] Menos [-]From Antarctica to the subtropics: contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.) Texto completo
2017
Carravieri, Alice | Cherel, Yves | Brault-Favrou, Maud | Churlaud, Carine | Peluhet, Laurent | Labadie, Pierre | Budzinski, Hélène | Chastel, Olivier | Bustamante, Paco | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-10-CESA-0016,POLARTOP,Contaminants chez les prédateurs supérieurs polaires: niveaux et effets des polluants organiques et métaux lourds sur la physiologie du stress et le devenir des oiseaux marins des Terres Australes Françaises (TAAF)(2010)
From Antarctica to the subtropics: contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.) Texto completo
2017
Carravieri, Alice | Cherel, Yves | Brault-Favrou, Maud | Churlaud, Carine | Peluhet, Laurent | Labadie, Pierre | Budzinski, Hélène | Chastel, Olivier | Bustamante, Paco | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-10-CESA-0016,POLARTOP,Contaminants chez les prédateurs supérieurs polaires: niveaux et effets des polluants organiques et métaux lourds sur la physiologie du stress et le devenir des oiseaux marins des Terres Australes Françaises (TAAF)(2010)
International audience | Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ13C, feeding habitat) and nitrogen (δ15N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 µg g-1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks’ POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild.
Mostrar más [+] Menos [-]From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.) Texto completo
2017
Carravieri, Alice | Cherel, Yves | Brault-Favrou, Maud | Churlaud, Carine | Peluhet, Laurent | Labadie, Pierre | Budzinski, Hélène | Chastel, Olivier | Bustamante, Paco
Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ13C, feeding habitat) and nitrogen (δ15N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 μg g−1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks’ POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild.
Mostrar más [+] Menos [-]Comparison of pesticide contamination between captive-reared and wild grey partridges: insights into environmental exposure disparities Texto completo
2024
Bariod, Léa | Gaffard, Agathe | Rodrigues, Anaïs | Millet, Maurice | Bretagnolle, Vincent | Pays, Olivier | Monceau, Karine | Moreau, Jérôme | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES) ; Université de Strasbourg (UNISTRA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE) ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) | Zone Atelier Plaine et Val de Sèvre (LTSER-ZAPVS) ; LTSER Réseau des Zones Ateliers (RZA) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Biodiversité dans l’Anthropocène - Dynamique, Fonction & Gestion (BIODIVAG) ; Université d'Angers (UA) | Reconciling Ecological and Human Adaptations for Biosphere Sustainability (REHABS) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Nelson Mandela University [Port Elizabeth] | Biogéosciences [UMR 6282] (BGS) ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | This research was funded by the French National Centre of Scientific Research (CNRS) | the French National Research Institute for Agriculture, Food and the Environment (INRAE) | the BioBird project funded by the regional government of Nouvelle-Aquitaine | the French National Program EC2CO (Ecosphère Continentale et Côtière)
International audience | Pesticide contamination is often cited as a key factor in the global decline of farmland birds. However, the majority of studies on pesticide exposure in non-target fauna are not representative of what happens in nature because they are limited to artificial conditions. The aim of this study was to define and compare, for the first time, pesticide contamination in grey partridges (Perdix perdix) from two different contexts, i.e., captivity vs. the wild. Blood samples taken from 35 captive and 54 wild partridges in 2021-2022 were analysed for 94 pesticides most commonly used in French agriculture. Captive partridges had 29 molecules detected in their blood (12 herbicides, 14 fungicides, and three insecticides) compared to wild partridges, which had 50 molecules (13 herbicides, 23 fungicides, and 14 insecticides). Of these pesticide compounds found in individuals, 26 were banned. Captive partridges had significantly fewer pesticide molecules than wild partridges, with one to 14 pesticides per captive individual and 8 to 20 pesticides per wild individual. Nineteen molecules were common to both groups, with concentrations up to three times higher in wild partridges than in captive partridges. Our results thus show multiple exposures for most of our individuals, especially in wild partridges, which can lead to cocktail effects, which are never considered. Furthermore, the difference in contamination between the wild and captive partridges reflects the multiple routes of contamination in nature, in particular, due to the use of a wide range of habitats by wild partridges.
Mostrar más [+] Menos [-]The establishing of ichthyological status of the Nisava river (Serbia, Yugoslavia) with special review of fishes' hematology
1998
Brankovic, S. (Fakultet zastite na radu, Nis (Yugoslavia)) | Ciric, B. | Stankovic, M.
Biosystematic research of fish population from the river Nisava (Serbia, Yugoslavia) is placed from the mouth of Jerma river and Nisava river to the mouth of Nisava river and Juzna Morava river (Serbia, Yugoslavia). The next part of the research is about determining the methodology for counting of particular fish species in the river Nisava. Hematological analyses of some species were done at the same time in order to establish the relation between water quality and number of erythrocytes, leucocytes and quantity of haemoglobin. Two autochthonous and allochthonous species were analyzed. The method used in this research are explained as well.
Mostrar más [+] Menos [-]Lead poisoning of backyard chickens: Implications for urban gardening and food production Texto completo
2022
Yazdanparast, Tahereh | Strezov, Vladimir | Wieland, Peter | Lai, Yi-Jen | Jacob, Dorrit E. | Taylor, Mark Patrick
Increased interest in backyard food production has drawn attention to the risks associated with urban trace element contamination, in particular lead (Pb) that was used in abundance in Pb-based paints and gasoline. Here we examine the sources, pathways and risks associated with environmental Pb in urban gardens, domestic chickens and their eggs. A suite of other trace element concentrations (including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn) are reported from the sampled matrices. Sixty-nine domestic chickens from 55 Sydney urban gardens were sampled along with potential sources (feed, soil, water), blood Pb concentrations and corresponding concentrations in eggs. Age of the sampled chickens and house age was also collected. Commercial eggs (n = 9) from free range farms were analysed for comparative purposes. Study outcomes were modelled using the large Australian VegeSafe garden soil database (>20,000 samples) to predict which areas of inner-city Sydney, Melbourne and Brisbane are likely to have soil Pb concentrations unsuitable for keeping backyard chickens. Soil Pb concentrations was a strong predictor of chicken blood and egg Pb (p=<0.00001). Almost 1 in 2 (n = 31/69) chickens had blood Pb levels >20 μg/dL, the level at which adverse effects may be observed. Older homes were correlated with higher chicken blood Pb (p = 0.00002) and egg Pb (p = 0.005), and younger chickens (<12 months old) had greater Pb concentrations, likely due to increased Pb uptake during early life development. Two key findings arose from the study data: (i) in order to retain chicken blood Pb below 20 μg/dL, soil Pb needs to be < 166 mg/kg; (ii) to retain egg Pb < 100 μg/kg (i.e. a food safety benchmark value), soil Pb needs to be < 117 mg/kg. These concentrations are significantly lower than the soil Pb guideline of 300 mg/kg for residential gardens. This research supports the conclusion that a large number of inner-city homes may not be suitable for keeping chickens and that further work regarding production and consumption of domestic food is warranted.
Mostrar más [+] Menos [-]A novel human biomonitoring study by semiconductor gas sensors in Exposomics: investigation of health risk in contaminated sites Texto completo
2022
Longo, Valentina | Forleo, Angiola | Radogna, Antonio Vincenzo | Siciliano, P. (Pietro) | Notari, Tiziana | Pappalardo, Sebastiana | Piscopo, Marina | Montano, Luigi | Capone, Simonetta
Two areas in central-southern Italy Land of Fires in Campania and Valley of Sacco river in Lazio are known to be contaminated sites, the first due to illegal fly-tipping and toxic fires, and the second due to an intensive industrial exploitation done by no-scruple companies and crooked public administration offices with dramatic consequences for environment and resident people. The work is intended to contribute to Human BioMonitoring (HBM) studies conducted in these areas on healthy young male population by a semiconductor gas sensor array trained by SPME-GC/MS. Human semen, blood and urine were investigated. The fingerprinting of the Volatile Organic Compounds (VOCs) by a gas sensors system allowed to discriminate the different contamination of the two areas and was able to predict the chemical concentration of several VOCs identified by GC/MS.
Mostrar más [+] Menos [-]Occupational exposure to rare earth elements: Assessment of external and internal exposure Texto completo
2022
Qiao, Xinhang | Cui, Wenxuan | Gao, Sheng | Zhi, Qiang | Li, Bin | Fan, Yaochun | Liu, Li | Gao, Jianqiong | Tan, Hongli
Our study investigated occupational exposure to rare earth elements (REEs) in a major REE processing plant from North China by assessing both external exposure and internal exposure in the workers. An exposure group, including 50 workers in the processing plant, and a control group, including 50 workers from a liquor factory located 150 km away from the exposure group, were recruited in the study. Portable air sampler was employed to accurately measure individual exposure to the external environment, and the data demonstrating significantly higher contamination in the REE processing plant compared with the control group (i.e., 87.5 versus 0.49 μg/m³ of ΣREEs). Blood concentrations were also significantly higher in the exposure group (3.47 versus 2.24 μg/L of ΣREEs). However, the compositional profiles of REEs resembled between the exposure and control group in blood or air particles, indicating the influence of mining/processing activities on the surrounding regions. External exposure in the occupational environment appeared to significantly influence internal REE exposure in the REE processing workers. Some other sociodemographic and occupational factors, including the residence time and the type of work, could also influence occupational exposure to selected REEs. Our data clearly demonstrated the highly elevated REE contamination in both working environment and human bodies compared with the control subjects, raising the critical need for better assessing the health risks from occupational REE exposure and efficient management for occupational hazards.
Mostrar más [+] Menos [-]Concentration dynamics of polychlorinated biphenyls and organochlorine pesticides in blood of growing Grey heron (Ardea cinerea) chicks in the wild Texto completo
2022
Valters, Karlis | Olsson, Anders | Vīksne, J. (Jānis) | Rubene, Liga | Bergman, Åke
Organochlorine contaminants (OCs) – organochlorine pesticides (OCPs) and industrial products and byproducts – are included in different monitoring programmes and surveys, involving various animal species. Fish-eating birds are suitable indicator species for OCs. Adult birds may be difficult to capture, but chicks can be sampled more easily. Blood of birds is a potentially suitable non-destructive matrix for analysis, as OC levels in blood reflect their concentrations in the body. The study was aimed at investigating how age of fast-growing Grey heron (Ardea cinerea) chicks affects contaminant levels in their blood and thus how important is sampling at exact age for biomonitoring purposes. In 1999 on Lake Engure in Latvia whole blood samples of heron chicks were collected at three different time points, with seven and nine days in between the first and second and second and third sampling points, respectively. Twenty-two chicks were sampled at all three times. In total, 102 samples were analysed for 19 polychlorinated biphenyl (PCB) congeners, DDT metabolites – DDE and DDD, hexachlorobenzene (HCB), α-, β-, γ-hexachlorocyclohexane (HCH), and trans-nonachlor. Total PCB concentrations averaged around 2000 ng/g dry extracted matter (EM). DDE was the dominant individual contaminant (ca. 800 ng/g EM), followed by CB-153, -138, and −118. Most of the other analysed OCs were below 100 ng/g EM. No significant (p > 0.05) differences in OC concentrations were found between the three sampling occasions, except for trans-nonachlor. This means that blood can safely be sampled for biomonitoring purposes during the 17 days’ time window. The analysed legacy contaminants may serve as model substances for other persistent organic pollutants.
Mostrar más [+] Menos [-]