Refinar búsqueda
Resultados 1-10 de 18
Using devitalized moss for active biomonitoring of water pollution
2016
Debén, S. | Fernández, J.A. | Carballeira, A. | Aboal, J.R.
This paper presents the results of an experiment carried out for the first time in situ to select a treatment to devitalize mosses for use in active biomonitoring of water pollution. Three devitalizing treatments for the aquatic moss Fontinalis antipyretica were tested (i.e. oven-drying at 100 °C, oven-drying with a 50-80-100 °C temperature ramp, and boiling in water), and the effects of these on loss of material during exposure of the transplants and on the accumulation of different heavy metals and metalloids were determined. The suitability of using devitalized samples of the terrestrial moss Sphagnum denticulatum to biomonitor aquatic environments was also tested. The structure of mosses was altered in different ways by the devitalizing treatments. Devitalization by boiling water led to significantly less loss of material (p < 0.01) than the oven-drying treatments. However, devitalization by oven-drying with a temperature ramp yielded more stable results in relation to both loss of material and accumulation of elements. With the aim of standardizing the moss bag technique, the use of F. antipyretica devitalized by oven-drying with a temperature ramp is recommended, rather than other devitalization treatments or use of S. denticulatum.
Mostrar más [+] Menos [-]Arsenic speciation and bioaccessibility in raw and cooked seafood: Influence of seafood species and gut microbiota
2021
Fu, Yaqi | Yin, Naiyi | Cai, Xiaolin | Du, Huili | Wang, Pengfei | Sultana, Mst Sharmin | Sun, Guoxin | Cui, Yanshan
Seafood is an important source of arsenic (As) exposure for humans. In this study, 34 seafood samples (fishes, shellfishes, and seaweeds) collected from different markets in China were analysed for total and speciated As before and after boiling. Furthermore, the As bioaccessibility was also assessed using a physiologically based extraction test combined with the Simulator of Human Intestinal Microbial Ecosystems. The results showed that the total As (tAs) contents of seaweeds (raw: 44.12; boiled: 31.13, μg·g⁻¹ dw) were higher than those of shellfishes (raw: 8.34; boiled: 5.14, μg·g⁻¹ dw) and fishes (raw: 6.01; boiled: 3.25, μg·g⁻¹ dw). Boiling significantly decreased the As content by 22.24% for seaweeds, 32.27% for shellfishes, and 41.42% in fishes, respectively (p < 0.05). During in vitro digestion, the bioaccessibility of tAs and arsenobetaine (AsB) significantly varied between the investigated species of seafood samples in gastric (G) and small intestinal phases (I) (p < 0.05). Higher tAs bioaccessibility (G: 68.6%, I: 81.9%) were obtained in fishes than shellfishes (G: 40.9%, I: 52.5%) and seaweeds (G: 31%, I: 53.6%). However, there was no significant differences in colonic phase (C) (p > 0.05). With the effect of gut microbiota, arsenate (AsⅤ) was transformed into monomethylarsonic acid (MMA) and arsenite (AsⅢ) in C. Moreover, as for seaweeds, an unknown As compound was produced.
Mostrar más [+] Menos [-]Removal of selenium containing algae by the bivalve Sinanodonta woodiana and the potential risk to human health
2018
Zhou, Chuanqi | Huang, Jung-Chen | Liu, Fang | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals and humans with a relatively narrow margin between nutritional essentiality and potential toxicity. Even though our previous studies have demonstrated algae could efficiently remove Se, mainly through volatilization, concern is raised about eco-risks posed by the remaining Se in algae. Here, Sinanodonta woodiana was investigated as a biofilter for the removal of Se-containing Chlorella vulgaris and for its potential risk to human health. Our results suggest filtration rates of S. woodiana were independent of Se levels in algal biomass, with a removal efficiency of between 60 and 78%. However, Se concentrations accumulated in mussels were significantly correlated with algal-borne Se levels, with a dietary assimilation efficiency ranging from 12% to 46%. Thus, a pilot biofiltration system was set up to assess uptake and depuration processes. The system was found to efficiently remove Se laden algae through the uptake by mussels, while 21% of Se in mussels could be depurated in 6 days. Among tissues, gills accumulated the highest Se concentration after assimilating algal-borne Se but shed Se compounds in the fastest pace during depuration. Health risks posed by consumption of mussels exposed to different sources of Se were further assessed. S. woodiana accumulated the highest Se concentration after exposure to waterborne SeMet, followed by dietary Se, selenite and control. The relatively higher Se levels were found in gills for all the treatments. After boiling, the most common method of cooking mussels, the greatest reduction in Se concentration occurred in mantle for the control and dietary Se groups and in muscle for the SeMet and selenite treatments. Therefore, within the safe limits, Se-containing mussels can be consumed as a dietary supplement. Overall, our research suggests incorporation of mussels into an algal treatment system can improve Se removal efficiency and also provide financial incentives for practitioners.
Mostrar más [+] Menos [-]Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves
2018
Xie, Mingjie | Shen, Guofeng | Holder, Amara L. | Hays, Michael D. | Jetter, James J.
Household cookstove emissions are an important source of carbonaceous aerosols globally. The light-absorbing organic carbon (OC), also termed brown carbon (BrC), from cookstove emissions can impact the Earth's radiative balance, but is rarely investigated. In this work, PM2.5 filter samples were collected during combustion experiments with red oak wood, charcoal, and kerosene in a variety of cookstoves mainly at two water boiling test phases (cold start CS, hot start HS). Samples were extracted in methanol and extracts were examined using spectrophotometry. The mass absorption coefficients (MACλ, m2 g−1) at five wavelengths (365, 400, 450, 500, and 550 nm) were mostly inter-correlated and were used as a measurement proxy for BrC. The MAC365 for red oak combustion during the CS phase correlated strongly to the elemental carbon (EC)/OC mass ratio, indicating a dependency of BrC absorption on burn conditions. The emissions from cookstoves burning red oak have an average MACλ 2–6 times greater than those burning charcoal and kerosene, and around 3–4 times greater than that from biomass burning measured in previous studies. These results suggest that residential cookstove emissions could contribute largely to ambient BrC, and the simulation of BrC radiative forcing in climate models for biofuel combustion in cookstoves should be treated specifically and separated from open biomass burning.
Mostrar más [+] Menos [-]Identification of genotoxic compounds in crude oil using fractionation according to distillation, polarity and Kow
2017
Park, Shin Yeong | Lee, Hyo Jin | Khim, Jong Seong | Kim, Gi Beum
We examined the degree of DNA damage caused by fractions of crude oil in accordance with the boiling points, polarity and log Kow. Relatively high DNA damage was observed in the aromatic fraction (290–330°C) and resin and polar fraction (350–400°C). The resin and polar fraction showed relatively high genotoxicity compared with the aliphatic and aromatic fraction at the 1–4 log Kow range. At the 6–7 log Kow range, the aromatic fraction showed relatively high DNA damage compared with the aliphatic and resin and polar fraction. In particular, every detailed fraction in accordance with the log Kow values (aliphatic and aromatic (310–320°C) and resins and polar fractions (370–380°C)) showed one or less than one DNA damage. However, the fractions before separation in accordance with log Kow values (aliphatic and aromatic (310–320°C) and resin and polar (370–380°C) fractions) showed high DNA damage. Thus, we confirm the synergistic action between the detailed compounds.
Mostrar más [+] Menos [-]Effect of cooking on total mercury content in Norway lobster and European hake and public health impact
2016
Perugini, Monia | Zezza, Daniela | Tulini, Serena Maria Rita | Abete, Maria Cesarina | Monaco, Gabriella | Conte, Annamaria | Olivieri, Vincenzo | Amorena, Michele
The risk of Hg poisoning by eating seafood is considered real from the several international agencies that recommended, by fish consumption advisories, to pregnant women and young children to avoid or severely limit the consumption of the fish and shellfish with a high-range mercury levels. The analyses of two common species, European hake and Norway lobster, collected from an area of Central Adriatic Sea, reported high mercury levels in crustaceans. For Norway lobster total mercury exceeded, in six out of ten analysed pools, the recommended 0.5mg/kg wet weight European limit. Moreover the increased amount of Hg concentrations in Norway lobster cooked samples suggests the necessity to review current procedures of Hg control in food, considering also consumption habits of consumers. The Hg values found in all European hake samples are below the legal limits and, in this species, the boiling did not modify the concentrations in fish tissues.
Mostrar más [+] Menos [-]Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin
2014
Brakstad, Odd G. | Daling, Per S. | Faksness, Liv-G. | Almås, Inger K. | Vang, Siv-H. | Syslak, Line | Leirvik, Frode
Physically and chemically (Corexit 9500) generated Macondo 252 oil dispersions, or emulsions (no Corexit), were prepared in an oil-on-seawater mesocosm flume basin at 30–32°C, and studies of oil compound depletion performed for up to 15days. The use of Corexit 9500 resulted in smaller median droplet size than in a physically generated dispersion. Rapid evaporation of low boiling point oil compounds (C⩽15) appeared in all the experiments. Biodegradation appeared to be an important depletion process for compounds with higher boiling points in the dispersions, but was negligible in the surface emulsions. While n-alkane biodegradation was faster in chemically than in physically dispersed oil no such differences were determined for 3- and 4-ring PAH compounds. In the oil dispersions prepared by Corexit 9500, increased cell concentrations, reduction in bacterial diversity, and a temporary abundance of bacteria containing an alkB gene were associated with oil biodegradation.
Mostrar más [+] Menos [-]Effect of cooking on arsenic concentration in rice
2020
Atiaga, Oliva | Nunes, Luis M. | Otero, Xosé L.
This study assessed the effect of rinsing and boiling on total content of As (tAs) and of its inorganic and organic forms in different types of rice (polished and brown) from Spain and Ecuador. Rice was subjected to five different treatments. The results showed that the treatment consisting of three grain rinsing cycles followed by boiling in excess water showed a significant decrease in tAs content compared with raw rice. Regarding As species, it is worth noting that the different treatments significantly reduced the content of the most toxic forms of As. The estimated lifetime health risks indicate that pre-rinsing alone can reduce the risk by 50%, while combining it with discarding excess water can reduce the risk by 83%; therefore, the latter would be the preferable method.
Mostrar más [+] Menos [-]Synthesis and characterization of Ag2O/B2O3/TiO2 ternary nanocomposites for photocatalytic mineralization of local dyeing wastewater under artificial and natural sunlight irradiation
2019
Tijani, Jimoh Oladejo | Momoh, Ufon Ojogbane | Salau, Rasaq Bolakale | Bankole, Mercy Temitope | Abdulkareem, Ambali Saka | Roos, Wiets Dániel
In this work, Ag₂O/B₂O₃/TiO₂ ternary nanocomposite was synthesized by a combination of green and precipitation method involving mixing of different concentrations of silver nitrate, boric acid, and titanium (IV) isopropoxide precursor with Plumeria acuminate leaf extract. The extract was obtained by boiling the mixture of distilled water and the powdered leaves in a beaker for few minutes followed by filtration. The microstructure, morphology, chemical composition, surface area, phase structure, and optical properties of the various prepared nanomaterials were determined by HRTEM, HRSEM, UV-Vis/DRS, BET, XRD, and XPS. The photocatalytic potential of TiO₂ nanoparticles and Ag₂O/B₂O₃/TiO₂ nanocomposites to degrade local dyeing wastewater under artificial and natural sunlight irradiation was investigated. The extent of degradation of the organic pollutants was measured using chemical oxygen demand (COD) and total organic carbon (TOC) as indicator parameters. The XRD pattern of Ag₂O/B₂O₃/TiO₂ nanocomposites revealed that the formation of pure anatase TiO₂ phase and the addition of both silver and boron precursors did not influenced the phase structure of the nanocomposites. The oxidation states of +1 and +3 for both Ag and B on the surface of Ag₂O/B₂O₃/TiO₂ nanocomposites were confirmed by XPS. Optical characterization of the sample revealed reduction of band gap energy from 2.6 to 2.0 eV for TiO₂ and Ag₂O/B₂O₃/TiO₂, respectively. The Ag₂O/B₂O₃/TiO₂ nanocomposites demonstrated excellent photocatalytic activity under natural sunlight and artificial light than mono and binary oxide systems with TOC and COD degradation efficiencies of 86.11% and 75.69%, respectively. The kinetics of degradation of organic dyes in the wastewater followed the order of Langmuir–Hinshelwood pseudo-first-order > Freundlich > Zero > Parabolic diffusion model. The coupling effect of Ag₂O and B₂O₃ onto TiO₂ framework was responsible for the enhanced photochemical stability of the nanocomposites even after five repeated cycles.
Mostrar más [+] Menos [-]Characteristics of polycyclic aromatic hydrocarbons in PM2.5 emitted from different cooking activities in China
2018
Li, Yun-Chun | Qiu, Jia-Qian | Shu, Man | Ho, Steven Sai Hang | Cao, Jun-Ji | Wang, Ge-Hui | Wang, Xian-Xiang | Zhao, Xiao-Qing
Nineteen polycyclic aromatic hydrocarbons (PAHs) in PM₂.₅ emitted from five different cooking activities were characterized, and their influencing factors were determined. The total quantified particle-bounded PAH concentrations (ΣPAHs) in the airs from the cooking activities were 4.2–36.5-fold higher than those in corresponding backgrounds. The highest ΣPAHs were seen in cafeteria frying (783 ± 499 ng/m³), followed by meat roasting (420 ± 191 ng/m³), fish roasting (210 ± 105 ng/m³), snack-street boiling (202 ± 230 ng/m³), and cafeteria boiling (150 ± 65 ng/m³). The main influencing factors on the PAH emissions were cooking methods, fat contents in raw materials, and oil consumptions. Four- to six-ringed PAHs had the highest contributions to the ΣPAHs (avg. 87.5%). Diagnostic ratios of individual PAH were similar between the two charbroiling and other three conventional Chinese cooking methods, respectively, demonstrating the dominance of cooking methods in the PAH emissions. Remarkably high benzo(b)fluoranthene/benzo(k)fluoranthene (BbF/BkF) ratio (8.31) was seen in the snack-street boiling, attributed to the coal combustion as cooking fuel. Both fluoranthene/(fluoranthene + pyrene) [FLT/(FLT + PYR)] and benzo(a)anthracene/(benzo(a)anthracene + chrysene) [BaA/(BaA + CHR)] ratios were higher for the oil-based cooking than those from the water-based ones. In addition, two ratios of indeno(1,2,3-cd)pyrene/(indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene) [IPY/(IPY + BPE)] and benzo(a)pyrene/(benzo(a)pyrene + benzo(g,h,i)perylene) [BaP/(BaP + BPE)] were higher for two charbroiling than the three conventional Chinese cooking methods. The characterization work in this study is particularly important since cooking is a potential contributor of atmospheric PAHs in urban China. Carcinogenic potencies of PAHs were assessed by comparison with the air quality guideline and health risk estimation. The BaP and BaP equivalent were higher for the oil-based than the water-based cooking activities.
Mostrar más [+] Menos [-]