Refinar búsqueda
Resultados 1-3 de 3
Physiological effects of toxic elements on a wild nightjar species
2020
Espín, Silvia | Sánchez-Virosta, Pablo | Zamora-Marín, José M. | León-Ortega, Mario | Jiménez, Pedro | Zamora-López, Antonio | Camarero, Pablo R. | Mateo, Rafael | Eeva, Tapio | García-Fernández, Antonio J.
Nightjars are considered human-tolerant species due to the population densities reached in strongly managed landscapes. However, no studies have been done evaluating metal-related effects on physiology, condition or fitness in any nightjar species. The main aim of this study was to evaluate how metal exposure affects physiology and condition in red-necked nightjar (Caprimulgus ruficollis) populations inhabiting three different environments in southeastern Spain: agricultural-urban area (n = 15 individuals), mining area (n = 17) and control area (n = 16).Increased plasma mineral levels (magnesium and calcium) and alkaline phosphatase (ALP) activity were observed in breeding females, and ALP was significantly higher in young birds due to bone growth and development. In the mining-impacted environment, nightjars showed decreased retinol (17.3 and 23.6 μM in the mining area and control area), uric acid (28.8 and 48.6 mg/dl in the mining area and control area) and albumin (16.2 and 19.6 g/l in the mining area and control area), probably impaired by a combination of toxic metal exposure and low prey quantity/quality in that area. Moreover, they showed increased plasma tocopherol levels (53.4 and 38.6 μM in the mining area and control area) which may be a response to cope with metal-induced oxidative stress and lipid peroxidation. Blood concentrations of toxic metals (As, Pb, Cd and Hg) were negatively associated with calcium, phosphorus, magnesium, ALP, total proteins and body condition index. This could lead to metal-related disorders in mineral metabolism and ALP activity that may potentially increase the risk of skeletal pathologies and consequent risk of fractures in the long term, compromising the survival of individuals. Further studies need to be carried out to evaluate potential metal-related effects on the antioxidant status and bone mineralization of nightjars inhabiting mining environments.
Mostrar más [+] Menos [-]Chronic effects of lead (Pb) on bone properties in red deer and wild boar: Relationship with vitamins A and D3
2013
Rodríguez-Estival, Jaime | Álvarez-Lloret, Pedro | Rodríguez-Navarro, Alejandro B. | Mateo, Rafael
Here we study the occurrence of abnormalities on bone tissue composition and turnover mechanisms through the Pb-mediated disruption of vitamins A and D in wild ungulates living in a lead (Pb)-polluted mining area. Red deer (Cervus elaphus) and wild boar (Sus scrofa) from the mining area had significantly higher liver and bone Pb levels than controls, which were associated with the depletion of liver retinyl esters and the corresponding increase of free retinol levels both in deer and boar from the mining area. Pb-exposed adult deer had lower carbonate content in bone mineral than controls, which was associated with the increased free retinol percentage. In wild boar, the degree of bone mineralization was also positively associated with higher burdens of retinyl esters. These results suggest that Pb-associated changes in bone composition and mineralization is likely influenced by the depletion of vitamin A in wildlife exposed to environmental Pb pollution.
Mostrar más [+] Menos [-]Associations of urinary polycyclic aromatic hydrocarbons with bone mass density and osteoporosis in U.S. adults, NHANES 2005–2010
2018
Guo, Jing | Huang, Yun | Bian, Suchen | Zhao, Chuning | Jin, Yumin | Yu, Dongdong | Wu, Xinkai | Zhang, Dan | Cao, Weiming | Jing, Fangyuan | Chen, Guangdi
Polycyclic aromatic hydrocarbons (PAHs) are environmental endocrine disruptors, which may modify the bone mineralization. However, epidemiological evidences on this issue were scant. We aimed to investigate the associations of PAHs with bone mass density (BMD) and osteoporosis based on a nationally-representative sample from general U.S. population. Data utilized were extracted from the 2005–2010 National Health and Nutrition Examination Survey (NHANES). Nine urinary PAHs (U-PAHs) metabolites were measured as exposure biomarkers. Associations of specific U-PAHs with BMD and osteoporosis were estimated by multivariable adjusted linear regression models and logistic regression models, respectively. Compared with women at the first tertiles, those at the third tertiles of 1-Hydroxynapthalene, 2-Hydroxyfluorene, 3-Hydroxyphenanthrene, 2-Hydroxyphenanthrene and 9-Hydroxyfluorene had significantly decreased BMD levels [coefficient (β) = −0.023 to −0.014, p < 0.05] or increased likelihoods of osteoporosis [odds ratios (ORs) = 1.86 to 3.36, p < 0.05] at different bone sites. Whereas, elevated BMD levels (β = 0.021, p < 0.05) at trochanter and decreased likelihoods of osteoporosis (OR = 0.33, p < 0.05) at intertrochanter were observed among women at the second tertiles of 1-Hydroxypyrene and 2-Hydroxynapthalene, respectively. Similar results were found for all the population, i.e., combination of men and women. Most of the significant associations disappeared among adult men only. Furthermore, Associations between U-PAHs and BMD were stronger for postmenopausal women when compared with premenopausal group. In conclusion, associations of U-PAHs with BMD and osteoporosis varied by specific U-PAHs and bone sites, as well as menopausal status and genders in U.S. adults.
Mostrar más [+] Menos [-]