Refinar búsqueda
Resultados 1-4 de 4
Molecular mechanisms underlying the calcium-mediated uptake of hematite nanoparticles by the ciliate Tetrahymena thermophila
2021
Wu, Chao | Guo, Wen-Bo | Liu, Yue-Yue | Yang, Liuyan | Miao, Ai-Jun
In aquatic ecosystems, the calcium (Ca) concentration varies greatly. It is well known that Ca affects the aggregation of nanoparticles (NPs) and thus their bioaccumulation. Nevertheless, Ca also plays critical roles in various biological processes, whose effects on NP accumulation in aquatic organisms remain unclear. In this study, the effects of Ca on the uptake of polyacrylate-coated hematite NPs (HemNPs) by the aquatic ciliate Tetrahymena thermophila were investigated. At all of the tested Ca concentrations, HemNPs were well dispersed in the experimental medium, excluding the possibility of Ca to influence HemNP bioaccumulation by aggregating the NPs. Instead, Ca was shown to induce the clathrin-mediated endocytosis and phagocytosis of HemNPs. Manipulation of the Ca speciation in the experimental medium as well as the influx and intracellular availability of Ca in T. thermophila indicated that HemNP uptake was regulated by the intracellular Ca level. The results of the proteomics analyses further showed that the binding of intracellular Ca to calmodulin altered the activity of proteins involved in clathrin-mediated endocytosis (calcineurin and dynamin) and phagocytosis (actin). Overall, the biologically inductive effects of Ca on NP accumulation in aquatic organisms should be considered when evaluating the environmental risks of NPs.
Mostrar más [+] Menos [-]Exogenous Ca2+ mitigates the toxic effects of TiO2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa
2019
Guan, Xiaofan | Tang, Yu | Zha, Shanjie | Han, Yu | Shi, Wei | Ren, Peng | Yan, Maocang | Pan, Qicun | Hu, Yuan | Fang, Jun | Zhang, Jiongming | Liu, Guangxu
Phagocytosis suppression induced by nanoparticles (NPs) exposure is increasingly reported in marine species. However, the mechanisms underlying this impact remain poorly understood. In order to improve our present understanding of the immunotoxicity of NPs, acute (96 h) TiO2 NP exposure and rescue trials via exogenous supply of Ca2+ were performed in the blood clam, Tegillarca granosa. The results show that the phagocytosis rate, cell viability, and intracellular Ca2+ concentration of haemocytes were significantly suppressed, whereas the intracellular ROS concentration of haemocytes significantly increased upon nTiO2 exposure. Exposure to nTiO2 also led to the significant downregulation of Caspase-3, Caspase-6, apoptosis regulator Bcl-2, Bcl-2-associated X, calmodulin kinase II, and calmodulin kinase kinase II. Furthermore, the toxic impacts of nTiO2 were partially mitigated by the addition of exogenous Ca2+, as indicated by the recovery tendency in almost all the measured parameters. The present study indicates that Ca2+ signaling could be one of the key pathways through which nTiO2 attacks phagocytosis.
Mostrar más [+] Menos [-]A study of oxidative stress induced by two polybrominated diphenyl ethers in the rotifer Brachionus plicatilis
2016
Zhang, Jing | Wang, You | Sun, Kai-Ming | Fang, Kuan | Tang, Xuexi
Polybrominated diphenyl ethers (PBDEs) are widely dispersed persistent organic pollutants in the marine ecosystem. However, their toxic mechanisms in marine organisms, especially invertebrates, remain poorly understood. Two common congeners of PBDEs, tetrabrominated diphenyl ether-47 (BDE-47) and decabrominated diphenyl ether-209 (BDE-209), were investigated. Their toxic mechanisms, with a focus on oxidative stress, were examined in rotifer Brachionus plicatilis. Overproduction of reactive oxygen species (ROS) was induced by two PBDEs. The expression of superoxide dismutase (SOD) mRNA was increased, suggesting SOD play a main role in ROS-scavenging. The intercellular concentrations of calcium ([Ca2+]in) and the expression of calmodulin (CaM) mRNA were increased. This indicates the calcium ion (Ca2+) signaling channel is involved in PBDEs stress. Further analysis showed that the reproductive system might be the target site for toxicity of PBDEs. Moreover, high value of detection indexes in BDE-47 experimental groups suggested BDE-47 might cause higher oxidative damage than BDE-209 in rotifers.
Mostrar más [+] Menos [-]Effects of low seawater pH on the marine polychaete Platynereis dumerilii
2015
Wäge, Janine | Hardege, Jorg D. | Larsson, Tomas A. | Simakov, Oleg | Chapman, Emma C. | Arendt, Detlev | Rotchell, Jeanette M.
An important priority for any organism is to maintain internal cellular homeostasis including acid–base balance. Yet, the molecular level impacts of changing environmental conditions, such as low pH, remain uncharacterised. Herein, we isolate partial Na+/H+exchangers (NHE), carbonic anhydrase (CA), and calmodulin (CaM) genes from a polychaete, Platynereis dumerilii and investigate their relative expression in acidified seawater conditions. mRNA expression of NHE was significantly down-regulated after 1h and up-regulated after 7days under low pH treatment (pH 7.8), indicating changes in acid–base transport. Furthermore, the localisation of NHE expression was also altered. A trend of down regulation in CA after 1h was also observed, suggesting a shift in the CO2 and HCO3− balance. No change in CaM expression was detected after 7days exposure to acidified seawater. This study provides insight into the molecular level changes taking place following exposure to acidified seawater in a non-calcifying, ubiquitous, organism.
Mostrar más [+] Menos [-]