Refinar búsqueda
Resultados 1-10 de 55
Occupational lead exposure on genome-wide DNA methylation and DNA damage
2022
Meng, Yu | Zhou, Mengyu | Wang, Tuanwei | Zhang, Guanghui | Tu, Yuting | Gong, Shiyang | Zhang, Yunxia | Christiani, David C. | Au, William | Liu, Yun | Xia, Zhao-lin
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
Mostrar más [+] Menos [-]Chronic carbon black nanoparticles exposure increases lung cancer risk by affecting the cell cycle via circulatory inflammation
2022
Zhang, Jianzhong | Li, Xin | Cheng, Wenting | Li, Yanting | Shi, Teng | Jiang, Yingying | Wang, Tao | Wang, Hongmei | Ren, Dunqiang | Zhang, Rong | Zheng, Yuxin | Tang, Jinglong
As a widely used pure elemental carbon in colloidal particles, carbon black was listed as a group 2B carcinogen by IARC in 2010. The most available mechanism information about carbon black and carcinogenesis are from in vivo or in vitro studies. However, few studies concerned the nanoparticle's real-ambient exposure causing systemic change and further affecting the target organ. Herein, we used an ex vivo biosensor assay to investigate the transcriptome change of primary bronchial epithelial cells after treatment with the plasma from workers with long-term occupational carbon black exposure history. Based on ex vivo biosensor assay and transcriptome sequencing, we found the effect of internal systemic environment on epithelial cells after carbon black exposure was an inflammatory response, which mainly activates cell cycle-related pathways. After exposure to carbon black, the internal systemic environment could activate cancer-related pathways like epithelial-mesenchymal transition, hypoxia, TNF-α signaling via NF-κB. The hub genes in the carbon black group (CDC20 and PLK1) and their correlation with the systemic environment were uncovered by constructing the protein-protein interaction network. Inflammatory cytokines, especially CRP, were strongly correlated with the expression of CDC20 and PLK1. Besides, we also find a strong correlation between CDC20 and cytokinesis-block micronucleus endpoints in peripheral blood (rho = 0.591, P < 0.001). Our results show that long-term carbon black exposure might activate cell cycle-related pathways through circulating inflammation and increase the risk of cancer, while the oxidative stress caused by diesel exhaust particles are mainly related to PAHs exposure. After exposure to carbon black, the systemic environment could activate cancer-related pathways like diesel exhaust particles, increasing the risk of lung cancer. These attempts might provide a further understanding of the indirect effect of chronic occupational inhaled carbon black exposure on pulmonary carcinogenesis.
Mostrar más [+] Menos [-]Enantioselective residues and toxicity effects of the chiral triazole fungicide hexaconazole in earthworms (Eisenia fetida)
2021
Liu, Tong | Fang, Kuan | Liu, Yalei | Zhang, Xiaolian | Han, Lingxi | Wang, Xiuguo
The enantioselective toxic effect and environmental behavior of chiral pesticides have attracted increasing research attention. In this study, the enantioselective toxicity and residues of hexaconazole (HEX) in earthworms (Eisenia fetida) were investigated. In the present study, significant enantioselective degradation characteristics were observed in artificial soil with the R-enantiomer preferentially degrading (p < 0.05); however, no significant enantioselective bioaccumulation was observed in the earthworms (p > 0.05). The acute toxicity of S-(+)-HEX was higher than that of R-(−)-HEX in earthworms, with 48-h LC₅₀ values of 8.62 and 22.35 μg/cm², respectively. At 25 mg/kg, enantiospecific induction of oxidative stress was observed in earthworms; moreover, S-(+)-HEX had a greater influence on the contents of malonaldehyde, cytochrome P450, and 8-hydroxy-2-deoxyguanosine than R-(−)-HEX. These results were consistent with those of the enrichment analysis of differentially expressed genes. The transcriptome sequencing results showed that S-(+)-HEX had a more significant influence on steroid biosynthesis, arachidonic acid metabolism, and cell cycle processes than R-(−)-HEX, leading to abnormal biological function activities. These results indicate that S-(+)-HEX may pose a higher risk to soil organisms than R-(−)-HEX. This study suggests that the environmental risk of chiral pesticides to nontarget organisms should be assessed at the enantiomeric level.
Mostrar más [+] Menos [-]The herbicide dinitramine affects the proliferation of murine testicular cells via endoplasmic reticulum stress-induced calcium dysregulation
2021
Ham, Jiyeon | Park, Sunwoo | Lim, Whasun | Song, Gwonhwa
The hazardous effects of herbicides are well known; however, their effects on the reproductive system remain unclear. In this study, we demonstrated the anti-proliferative effects of dinitramine (DN) on immature murine testicular cell lines (Leydig and Sertoli cells) mediated via endoplasmic reticulum (ER) stress-induced calcium dysregulation in the cytosol and mitochondria. The results demonstrated that the viability and proliferation of DN-treated TM3 and TM4 cells decreased significantly, even in the spheroid state. DN induced the apoptosis of TM3 and TM4 cells and decreased the expression of genes related to cell cycle progression. Treatment with DN increased the cytosolic and intramitochondrial levels of calcium by activating ER stress signals. DN activated the Erk/P38/Jnk Mapk pathway and inactivated the Pi3k/Akt pathway in murine testicular cells. Co-treatment with 2-aminoethoxydiphenyl borate (2-APB) mitigated DN-induced calcium upregulation in both testicular cell lines. Although 2-APB did not antagonize the anti-proliferative effect of DN in TM3 cells, treatment with 2-APB and 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid restored the proliferation of DN-treated TM4 cells.
Mostrar más [+] Menos [-]Application of advanced HepG2 3D cell model for studying genotoxic activity of cyanobacterial toxin cylindrospermopsin
2020
Hercog, Klara | Štampar, Martina | Štern, Alja | Filipič, Metka | Žegura, Bojana
Cylindrospermopsin (CYN) is an emerging cyanotoxin increasingly being found in freshwater cyanobacterial blooms worldwide. Humans and animals are exposed to CYN through the consumption of contaminated water and food as well as occupational and recreational water activities; therefore, it represents a potential health threat. It exhibits genotoxic effects in metabolically active test systems, thus it is considered as pro-genotoxic. In the present study, the advanced 3D cell model developed from human hepatocellular carcinoma (HepG2) cells was used for the evaluation of CYN cyto-/genotoxic activity. Spheroids were formed by forced floating method and were cultured for three days under static conditions prior to exposure to CYN (0.125, 0.25 and 0.5 μg/mL) for 72 h. CYN influence on spheroid growth was measured daily and cell survival was determined by MTS assay and live/dead staining. The influence on cell proliferation, cell cycle alterations and induction of DNA damage (γH2AX) was determined using flow cytometry. Further, the expression of selected genes (qPCR) involved in the metabolism of xenobiotics, proliferation, DNA damage response, apoptosis and oxidative stress was studied. Results revealed that CYN dose-dependently reduced the size of spheroids and affected cell division by arresting HepG2 cells in G1 phase of the cell cycle. No induction of DNA double strand breaks compared to control was determined at applied conditions. The analysis of gene expression revealed that CYN significantly deregulated genes encoding phase I (CYP1A1, CYP1A2, CYP3A4, ALDH3A) and II (NAT1, NAT2, SULT1B1, SULT1C2, UGT1A1, UGT2B7) enzymes as well as genes involved in cell proliferation (PCNA, TOP2α), apoptosis (BBC3) and DNA damage response (GADD45a, CDKN1A, ERCC4). The advanced 3D HepG2 cell model due to its more complex structure and improved cellular interactions provides more physiologically relevant information and more predictive data for human exposure, and can thus contribute to more reliable genotoxicity assessment of chemicals including cyanotoxins.
Mostrar más [+] Menos [-]Toxic effects and mechanisms of three commonly used fungicides on the human colon adenocarcinoma cell line Caco-2
2020
Tao, Huaping | Bao, Zhiwei | Jin, Cuiyuan | Miao, Wenyu | Fu, Zhengwei | Jin, Yuanxiang
Fungicides, usually refer to the chemical agents that can effectively control or kill the pathogenic microorganisms. Here, we revealed the effects of three different fungicides, imazalil (IMZ), chlorothalonil (CTL) and carbendazim (CBZ), which are typical broad-spectrum fungicides that are detected at high levels in the natural environment, on heterogeneous human epithelial colorectal cells (Caco-2 cells). All three fungicides had the potential to induce different degrees of toxicity, cause apoptosis, reactive oxygen species (ROS) and even change the cell cycle in the cells. The half maximal inhibitory concentration (IC50) of CTL is the lowest among these three fungicides, suggesting that it may have the highest exposure risk, followed by IMZ, and CBZ. The results of the real-time PCR, Western blotting, and mitochondrial membrane potential (MMP) assays and the activities of key enzymes suggested that CTL induced apoptosis in Caco-2 cells via a mitochondrial-dependent pathway, as indicated by the upregulation of the expression of the apoptotic p53 and bax genes, the increase of the apoptosis marker cytochrome-c, the decrease of mRNA level of bcl-2 gene, and the decrease in the MMP. Exposure to two other fungicides also upregulated the transcriptional level of bax and the expression of cytochrome-c, but the mRNA level of bcl-2 was increased (IMZ) or unchanged (CBZ), suggesting that other pathways may be involved in the induction of cellular apoptosis by these two fungicides. In addition, all three of the fungicides could induce oxidative stress in Caco-2 cells. Our data showed that the three different kinds of fungicides all caused toxic effects in Caco-2 cells through various pathways.
Mostrar más [+] Menos [-]Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress
2020
Ding, Zhi-Ming | ʻAdīl, Jamīl Aḥmad | Meng, Fei | Chen, Fan | Wang, Yong-Shang | Zhao, Xin-Zhe | Zhang, Shou-Xin | Miao, Yi-Liang | Xiong, Jia-Jun | Huo, Li-Jun
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
Mostrar más [+] Menos [-]17β-estradiol at low concentrations attenuates the efficacy of tamoxifen in breast cancer therapy
2019
Xu, Zhixiang | Zheng, Xianyao | Xia, Xueshan | Wang, Xiaoxia | Luo, Nao | Huang, Bin | Pan, Xuejun
Tamoxifen has been applied widely in the treatment of estrogen receptor (ER)-positive breast cancer. The impact of low concentrations of 17β-estradiol (E2) (a pervasive environmental pollutant) on its effectiveness was studied in vitro using an MCF-7 cell line. Cell proliferation, migration, invasion, and apoptosis were studied along with cell cycle progression, reactive oxygen species generation and mitochondrial membrane potentials repression. The signaling pathways involved were identified. Typical concentrations of E2 in the environment (10⁻¹⁰ to 10⁻⁸ M) were observed to promote cell growth and protect MCF-7 cells from tamoxifen's cytotoxicity. Cell migration, invasion, cell cycle progression and apoptosis all involved in reducing tamoxifen's cytotoxicity. E2 at environmental concentrations induced PI3K/Akt and MAPK/ERK signal transduction through the estrogen receptor pathways to affect cell proliferation. Taken together, the results explain how E2 in the environment may attenuate the efficacy of tamoxifen in ER-positive breast cancer therapy. They provide considerable support for E2's adverse effects on human health and cancer management.
Mostrar más [+] Menos [-]Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin
2014
Cachon, Boris Fresnel | Firmin, Stéphane | Verdin, Anthony | Ayi-Fanou, Lucie | Billet, Sylvain | Cazier, Fabrice | Martin, Perrine J. | Aissi, Faustin | Courcot, Dominique | Sanni, Ambaliou | Shirali, Pirouz
After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM2.5 and PM>2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5–96 μg/cm2) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm2 to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators.
Mostrar más [+] Menos [-]Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols
2011
Mei, Xin | Wu, Yuan-yuan | Mao, Xiao | Tu, You-Ying
Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene.
Mostrar más [+] Menos [-]