Refinar búsqueda
Resultados 1-10 de 39
A novel method to evaluate chemical concentrations in muddy and sandy coastal regions before and after oil exposures
2021
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical concentrations along coastlines. In prior work, these concentration changes were used to evaluate the date sediment was impacted by oil (i.e., oil exposure date). The objective of the current study was to build upon prior work by using the oil exposure date to compute oil spill chemical (OSC) concentrations in shoreline sediments before and after exposure. The new method was applied to OSC concentration measures collected during the Deepwater Horizon oil spill with an emphasis on evaluating before and after concentrations in muddy versus sandy regions. The procedure defined a grid that overlaid coastal areas with chemical concentration measurement locations. These grids were then aggregated into clusters to allow the assignment of chemical concentration measurements to a uniform coastal type. Performance of the method was illustrated for ten chemicals individually by cluster, and collectively for all chemicals and all clusters. Results show statistically significant differences between chemical concentrations before and after the calculated oil exposure dates (p < 0.04 for each of the 10 chemicals within the identified clusters). When aggregating all chemical measures collectively across all clusters, chemical concentrations were lower before oil exposure in comparison to after (p < 0.0001). Sandy coastlines exhibited lower chemical concentrations relative to muddy coastlines (p < 0.0001). Overall, the method developed is a useful first step for establishing baseline chemical concentrations and for assessing the impacts of disasters on sediment quality within different coastline types. Results may be also useful for assessing added ecological and human health risks associated with oil spills.
Mostrar más [+] Menos [-]Use of chemical concentration changes in coastal sediments to compute oil exposure dates
2020
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical contaminant concentrations along coastlines. When concentrations are measured along the Gulf of Mexico over time, this information can be used to evaluate oil spill shoreline exposure dates. The objective of this research was to identify more accurate oil exposure dates based on oil spill chemical concentrations changes (CCC) within sediments in coastal zones after oil spills. The results could be used to help improve oil transport models and to improve estimates of oil landings within the nearshore. The CCC method was based on separating the target coastal zone into segments and then documenting the timing of large increases in concentration for specific oil spill chemicals (OSCs) within each segment. The dataset from the Deepwater Horizon (DWH) oil spill was used to illustrate the application of the method. Some differences in exposure dates were observed between the CCC method and between oil spill trajectories. Differences may have been caused by mixing at the freshwater and sea water interface, nearshore circulation features, and the possible influence of submerged oil that is unaccounted for by oil spill trajectories. Overall, this research highlights the benefit of using an integrated approach to confirm the timing of shoreline exposure.
Mostrar más [+] Menos [-]Effect of aging on bioaccessibility of DDTs and PCBs in marine sediment
2019
Taylor, Allison R. | Wang, Jie | Liao, Chunyang | Schlenk, Daniel | Gan, Jay
Hydrophobic legacy contaminants like dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) were banned almost half a century ago. While their residues still remain in many environmental compartments, they have undergone extensive aging and likely have lower bioaccessibility (the available fraction) compared to fresh residues. However, risk assessment relies heavily on the use of total chemical concentration, rather than accounting for age-diminished bioaccessibility, likely leading to overestimated risks. In this study, we used 24 h Tenax desorption to measure the potential bioaccessibility of DDTs and PCBs in two sediment cores taken from the Palos Verdes Shelf Superfund site in the Pacific Ocean. The total concentrations of DDTs and PCBs from the core located at the sewage outfall (8C) were as high as 41,000–15,700 μg/kg (dry weight, dw) and 530-2600 μg/kg dw, respectively, while those from a location 7 km northeast of the outfall (3C) were 2–3 orders of magnitude lower. Bioaccessibility estimated by 24-h Tenax-aided desorption (F24h) decreased in the order of DDD > DDE > DDT for DDT derivatives, and PCB 52 > PCB 70 > PCB 153 for PCB congeners, showing a negative correlation with their log Kow. Due to the extensive aging, F24h values were <20% of the total chemical concentration for most contaminants and <5% for DDT, DDE and PCB 153, suggesting that aging greatly diminished their bioavailability. However, a quantitative relationship between F24h and sediment age along the vertical profile was not found, likely because the contaminant residues had undergone aging before their offsite transport and deposition onto the ocean floor. As the use of man-made chemicals such as DDT and PCBs was discontinued in the U.S. many decades ago, the reduction in their bioavailability due to aging may be universal and should be taken into consideration to avoid overly conservative risk predictions or unnecessary mitigation interventions.
Mostrar más [+] Menos [-]Development of polyurethane-based passive samplers for ambient monitoring of urban-use insecticides in water
2017
Liao, Chunyang | Richards, Jaben | Taylor, Allison R. | Gan, Jay
Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water.
Mostrar más [+] Menos [-]PBDD/F impurities in some commercial deca-BDE
2011
Ren, Man | Peng, Ping’an | Cai, Ying | Chen, Deyi | Zhou, Lin | Chen, Pei | Hu, Jianfang
The study presented the concentrations and distributions of polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) as impurities in some commercial decabromodiphenyl ether (DBDE) mixtures that were produced by several manufacturers. The total concentrations of 12 2,3,7,8-substituted tetra- to octa-BDD/F congeners were found to be in the range of 3.4–13.6 (mean 7.8)μg/g, averagely accounting for 99% of total PBDD/Fs. OBDF was the prevailing congener, followed by 1,2,3,4,6,7,8-HpBDF. In addition, OBDD and 1,2,3,4,7,8-HxBDF were also obviously detectable. The total concentrations of PBDD/Fs varied both between the manufacturers and between the lots. On the basis of the global demand for the commercial DBDE in 2001, the annual potential emissions of PBDD/Fs were calculated coarsely to be 0.43 (range: 0.21–0.78)tons. The major dioxin congeners, OBDF and 1,2,3,4,6,7,8-HpBDF, presenting in DBDE, were estimated to be formed from BDE-209, BDE-206, and/or BDE-207 via an intra-molecular elimination of Br₂/HBr.
Mostrar más [+] Menos [-]A novel human biomonitoring study by semiconductor gas sensors in Exposomics: investigation of health risk in contaminated sites
2022
Longo, Valentina | Forleo, Angiola | Radogna, Antonio Vincenzo | Siciliano, P. (Pietro) | Notari, Tiziana | Pappalardo, Sebastiana | Piscopo, Marina | Montano, Luigi | Capone, Simonetta
Two areas in central-southern Italy Land of Fires in Campania and Valley of Sacco river in Lazio are known to be contaminated sites, the first due to illegal fly-tipping and toxic fires, and the second due to an intensive industrial exploitation done by no-scruple companies and crooked public administration offices with dramatic consequences for environment and resident people. The work is intended to contribute to Human BioMonitoring (HBM) studies conducted in these areas on healthy young male population by a semiconductor gas sensor array trained by SPME-GC/MS. Human semen, blood and urine were investigated. The fingerprinting of the Volatile Organic Compounds (VOCs) by a gas sensors system allowed to discriminate the different contamination of the two areas and was able to predict the chemical concentration of several VOCs identified by GC/MS.
Mostrar más [+] Menos [-]Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions
2020
Li, Zongrui | He, Chang | Thái Phong, | Wang, Xianyu | Bräunig, Jennifer | Yu, Yunjiang | Luo, Xiaojun | Mai, Bixian | Mueller, Jochen F.
A substantial increase in the usage of organophosphate esters (OPEs) as flame retardants and plasticizers in rubbers, textiles, upholstered furniture, lacquers, plastics, building materials and electronic equipment has resulted in their increasing concentrations in the environment over time. However, little is known about the concentrations and fate of OPEs and their metabolites (mOPEs) in biota, including chicken eggs. The aim of this study was to understand the spatial variation in the concentrations in chicken eggs and the partitioning between yolk and albumin. In total, 153 chicken eggs were purchased across Australia and analysed for 9 OPEs and 11 mOPE. Most of the compounds were found to be deposited in egg yolk, where diphenyl phosphate (DPHP, 3.8 ng/g wet weight, median) and tris(2-chloroisopropyl) phosphate (TCIPP, 1.8 ng/g wet weight, median) were predominant mOPE and OPE, respectively. Moreover, no spatial differences in concentrations of OPEs and mOPEs in eggs purchased from different locations were found in this study. Although comparable levels of ∑OPEs were detected in egg yolk and albumin, much higher concentrations of ∑mOPEs were found in yolk than albumin. Meanwhile, a negative correlation (R² = 0.964, p = 0.018) was found between the molecular mass of analytes and partitioning coefficient of Cyₒₗₖ/Cyₒₗₖ₊ₐₗbᵤₘᵢₙ (defined as chemical concentration in egg yolk divided by the sum of chemical concentrations in both yolk and albumin). These results indicate that n-octanol/water partition coefficients (log KOW) may not be a crucial factor in the distribution of OPEs and mOPEs between egg yolk and albumin, which is important in understanding distribution of emerging organic contaminants in biota.
Mostrar más [+] Menos [-]Modeling TiO2 nanoparticle phototoxicity: The importance of chemical concentration, ultraviolet radiation intensity, and time
2015
Li, Shibin | Erickson, Russell J. | Wallis, Lindsay K. | Diamond, Steve (Stephen A.) | Hoff, Dale J.
As a semiconductor with wide band gap energy, TiO2 nanoparticles (nano-TiO2) are highly photoactive, and recent efforts have demonstrated phototoxicity of nano-TiO2 to aquatic organisms. However, a dosimetry model for the phototoxicity of nanomaterials that incorporates both direct UV and photo-activated chemical toxicity has not yet been developed. In this study, a set of Hyalella azteca acute toxicity bioassays at multiple light intensities and nano-TiO2 concentrations, and with multiple diel light cycles, was conducted to assess how existing phototoxicity models should be adapted to nano-TiO2. These efforts demonstrated (a) adherence to the Bunsen-Roscoe law for the reciprocity of light intensity and time, (b) no evidence of damage repair during dark periods, (c) a lack of proportionality of effects to environmental nano-TiO2 concentrations, and (d) a need to consider the joint effects of nano-TiO2 phototoxicity and direct UV toxicity.
Mostrar más [+] Menos [-]Inferring chemical effects on carbon flows in aquatic food webs: Methodology and case study
2010
Laender, Frederik De | Soetaert, K. | Middelburg, J.J.
The majority of ecotoxicological enclosure experiments monitor species abundances at different chemical concentrations. Here, we present a new modelling approach that estimates changes in food web flows from such data and show that population- and food web level effects are revealed that are not apparent from abundance data alone. For the case of cypermethrin in freshwater enclosures, photosynthesis and excretion (d−1) of phytoplankton at 3.643 μg L-1 cypermethrin were 30% lower and 100% higher than in the control, respectively. The ingestion rate of mesozooplankton (d−1) was 6 times higher in the treated enclosures than in the control as food concentration increased with insecticide exposure. With increasing cypermethrin concentrations, nanoflagellates progressively relied on phytoplankton as their main food source, which rendered the food web less stable. We conclude that this tool has excellent potential to analyse the wealth of enclosure data as it only needs species abundance and general constraints.
Mostrar más [+] Menos [-]Geochemical partitioning and pollution assessment of Ni and V as indicator of oil pollution in surface sediments from Shadegan wildlife refuge, Iran
2016
Chaharlang, Behnam Heidari | Bakhtiari, Alireza Riyahi | Mohammadi, Jahangard | Farshchi, Parvin
The total concentrations and chemical partitioning of Ni, V and Fe have been assessed in surface sediments from 160 sites along the Shadegan wildlife refuge. The results showed that the average total level of Ni, V and Fe in surface sediments were 45.08±12.09, 25.25±20.8 and 25,979.01±6917.91μg/g dw, respectively. On the average, the chemical speciation of Ni, V and Fe in most stations were in the order of residual>oxidisable-organic>acid-reducible>exchangeable. In all fractions, the residual was accounted the highest proportion for the metals analyzed. Among the non-residual phases, the proportion of heavy metals in organic matter fraction was higher than other phases collected from all locations. The comparison between measured values in this study and some fresh water sediment quality guidelines indicated that the levels of nickel would be expected to sporadically cause harmful biological impacts on biota in the Shadegan wildlife refuge.
Mostrar más [+] Menos [-]