Refinar búsqueda
Resultados 1-10 de 37
Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water
2017
Folkerts, Erik J. | Blewett, Tamzin A. | He, Yuhe | Goss, Greg G.
Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24–72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO2), while for 5% FPW, both fractions reduced MO2. Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO2. Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure.
Mostrar más [+] Menos [-]Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability
2017
Matos, João T.V. | Duarte, Regina M.B.O. | Lopes, Sónia P. | Silva, Artur M.S. | Duarte, Armando C.
Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an “annual background” profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H–C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior.
Mostrar más [+] Menos [-]Theoretical study on the formation mechanism of pre-intermediates for PXDD/Fs from 2-bromophenol and 2-Chlorophenol precursors via radical/molecule reactions
2017
Pan, Wenxiao | Fu, Jianjie | Zhang, Aiqian
This study investigates reaction pathways for the formation of pre-PXDD/F intermediates via a radical/molecule mechanism. Thermodynamic and kinetic parameters for the combination reactions of 2-bromophenol (2-BP) and 2-chlorophenol (2-CP) precursors with key radical species including the phenoxy radicals, the phenyl radicals and the phenoxyl diradicals were calculated in detail. The couplings of phenoxy radicals with 2-B(C)P tend to produce pre-PXDD intermediates of halogenated o-phenoxyphenol. The combinations of phenyl and phenoxyl diradicals with 2-B(C)P produce two types of structures, i.e., dihydroxybiphenyl and o-phenoxyphenyl, which exclusively act as prestructures of PXDFs. These condensation reactions, especially those involving the phenyl C atom sites in phenyl and phenoxyl diradicals, are proven to be both thermodynamically and kinetically favorable and are nearly comparable with the corresponding steps involved in the radical/radical reactions. Most importantly, reactions of phenyl and phenoxyl diradicals with halogenated phenols solely lead to the formation of PXDFs, which to some extent provides a plausible explanation for the high PXDF-to-PXDD ratios in the real environment. Therefore, our study reveals the pivotal role of the radical/molecule mechanism in homogeneous gas-phase PXDD/F formation, especially in PXDF formation. The present results fill in a knowledge gap that has hitherto existed regarding dioxin formation and improve our understanding of PXDD/F formation characteristics in the environment.
Mostrar más [+] Menos [-]Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent
2016
Ory, Jérôme | Bricheux, Geneviève | Togola, Anne | Bonnet, Jean-Louis | Donnadieu-Bernard, Florence | Nakusi, Laurence | Forestier, Christiane | Traore, Ousmane
Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model.During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6′)-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins).In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains.Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater and question the role of environmental biofilms communities as efficient shelters for hospital-released resistance genes.
Mostrar más [+] Menos [-]Over 100-year sedimentary record of polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds (OCs) in the continental shelf of the East China Sea
2016
Cai, Yizhi | Wang, Xinhong | Wu, Yuling | Li, Yongyu | Ya, Miaolei
Historical records of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were analyzed in two dated sediment cores (DH05 and DH11) collected from the continental shelf of the East China Sea (ECS) to investigate the influence of anthropogenic activities on marine sediment over the past century. The concentrations and fluxes of 15 PAHs were in the range of 28.6–96.5 ng g−1 and 7.6–35.2 ng cm−2 yr−1 in DH05 (1920s–2009), 18.8–76.4 ng g−1 and 13.9–30.9 ng cm−2 yr−1 in DH11 (1860s–2009). The sedimentary records of PAHs in the two cores generally reflected the economic development and energy consumption change in China. Identification of sources suggested that PAHs in ECS were predominantly from petrogenic origin and various combustion sources. A change of source from low- and moderate-temperature combustion to high-temperature combustion process was observed. Although a production ban of technical HCH and DDT was imposed in China in 1983, their sedimentary fluxes display increasing trends or strong rebounds from 1980s to 1990s as recorded in the core profiles. High proportions of DDD + DDE and γ-HCH suggested those OCPs mainly derived from early residuals. Temporal trends of PCBs presented relative high levels from 1970s to 1980s and high proportions of PCB congeners with 3–6 chlorines atoms indicated industrial sources.
Mostrar más [+] Menos [-]Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan
2016
Chuang, Ming-Tung | Chen, Yu-Chieh | Lee, Chung-Te | Cheng, Chung-Hao | Tsai, Yu-Jen | Chang, Shih-Yu | Su, Zhen-Sen
To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m−3) and non-event days (PM2.5<35 μg m−3). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl− and NO3− increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority.
Mostrar más [+] Menos [-]Linking chemical elements in forest floor humus (Oₕ-horizon) in the Czech Republic to contamination sources
2011
Sucharova, Julie | Suchara, Ivan | Hola, Marie | Reimann, Clemens | Boyd, Rognvald | Filzmoser, Peter | Englmaier, Peter
While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the “environmental memory” of an area for at least the last 60–100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300km² in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources.
Mostrar más [+] Menos [-]The role of IL-6 released from pulmonary epithelial cells in diesel UFP-induced endothelial activation
2017
Bengalli, Rossella | Longhin, Eleonora | Marchetti, Sara | Proverbio, Maria C. | Battaglia, Cristina | Camatini, Marina
Diesel exhaust particles (DEP) and their ultrafine fraction (UFP) are known to induce cardiovascular effects in exposed subjects. The mechanisms leading to these outcomes are still under investigation, but the activation of respiratory endothelium is likely to be involved. Particles translocation through the air-blood barrier and the release of mediators from the exposed epithelium have been suggested to participate in the process. Here we used a conditioned media in vitro model to investigate the role of epithelial-released mediators in the endothelial cells activation.Diesel UFP were sampled from a Euro 4 vehicle run over a chassis dyno and lung epithelial BEAS-2B cells were exposed for 20 h (dose 5 μg/cm2). The exposure media were collected and used for endothelial HPMEC-ST1.6R cells treatment for 24 h. The processes related to oxidative stress and inflammation were investigated in the epithelial cells, accordingly to the present knowledge on DEP toxicity. The release of IL-6 and VEGF was significantly augmented in diesel exposed cells. In endothelial cells, VCAM-1 and ICAM-1 adhesion molecules levels were increased after exposure to the conditioned media. By interfering with IL-6 binding to its endothelial receptor, we demonstrate the role of this interleukin in inducing the endothelial response.
Mostrar más [+] Menos [-]Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling
2016
Sun, Kai | Liang, Shangtao | Kang, Fuxing | Gao, Yanzheng | Huang, Qingguo
Steroidal estrogens (SEs), widespread in aquatic systems, have a potential to disrupt the endocrine system of wildlife species and humans. In our experiments, the performance of ε-MnO2 nanorods in transforming 17β-estradiol (E2) was investigated, and the effect of humic acid (HA) on the reaction behaviors was systematically characterized. Reconfiguration of humic molecules was also investigated by high-performance size exclusion chromatography (HPSEC). Results indicated that ε-MnO2 nanomaterials ensured efficient removal of E2 from the aqueous solution. The presence of HA hindered the transformation of E2, while enhanced the cross-coupling between E2 and humic molecules. In particular, we used a mixture of un-labeled E2 and 13C3-labeled E2 at a 1: 1 set ratio (w/w) to probe the reaction products via high-resolution mass spectrometry (HRMS). The combination of HRMS and 13C3-labeling revealed the intermediate products including estrone (E1), and hydroxylated, quinone-like, and ring-opened species, as well as E2 dimer and trimer. More importantly, possible cross-coupling products between E2 and HA were also identified. A reaction mechanism including two-electron oxidation and single-electron oxidation was proposed. The applied analytical approach using HRMS along with 13C3-labeling for reaction-product identification is crucial to understanding the role of HA in the transformation of SEs.
Mostrar más [+] Menos [-]Association between risk of birth defects occurring level and arsenic concentrations in soils of Lvliang, Shanxi province of China
2014
Wu, Jilei | Zhang, Chaosheng | Pei, Lijun | Chen, Gong | Zheng, Xiaoying
The risk of birth defects is generally accredited with genetic factors, environmental causes, but the contribution of environmental factors to birth defects is still inconclusive. With the hypothesis of associations of geochemical features distribution and birth defects risk, we collected birth records and measured the chemical components in soil samples from a high prevalence area of birth defects in Shanxi province, China. The relative risk levels among villages were estimated with conditional spatial autoregressive model and the relationships between the risk levels of the villages and the 15 types of chemical elements concentration in the cropland and woodland soils were explored. The results revealed that the arsenic levels in cropland soil showed a significant association with birth defects occurring risk in this area, which is consistent with existing evidences of arsenic as a teratogen and warrants further investigation on arsenic exposure routine to birth defect occurring risk.
Mostrar más [+] Menos [-]