Refinar búsqueda
Resultados 1-10 de 112
Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups
2022
Tang, Sijing | Qian, Jin | Wang, Peifang | Lu, Bianhe | He, Yuxuan | Yi, Ziyang | Zhang, Yuhang
Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.
Mostrar más [+] Menos [-]Dynamics in imidacloprid sorption related to changes of soil organic matter content and quality along a 20-year cultivation chronosequence of citrus orchards
2021
Zheng, Taihui | Hu, Tong | Zhang, Jie | Tang, Chongjun | Duan, Jian | Song, Yuejun | Zhang, Qin
The on-going and extensive use of neonicotinoids occur in orchards. However, it is still unknown whether and how orchard management affects soil properties, especially the contents and structure of soil organic matter during orchard development, and their further influences on neonicotinoid persistence. Here, surface soil samples were collected from the citrus orchards with different cultivation ages (1, 10, 14, and 20 years), and their physicochemical properties were determined. Changes in the chemical structure of soil organic matter (SOM) were furtherly examined using solid-state CP/TOSS ¹³C NMR. Then, the sorption isotherms of imidacloprid in these soils were investigated. The sorption coefficient (Kd) of imidacloprid at Cₑ of 0.05 mg/L in the orchard soils increased by 19.4–23.3%, along a 20-year chronosequence of cultivation, which should be mainly ascribed to the increase of SOM. However, the organic carbon-normalized sorption coefficient (Kₒc, sorption per unit mass of OM) of imidacloprid declined with increasing cultivation ages. Moreover, the polar and aliphatic domains of SOM had a significantly positive relation to the Kₒc of imidacloprid, suggesting its key role in governing imidacloprid sorption. The results highlighted that reasonable management measures could be adopted to control the occurrence and fate of neonicotinoids in soils, mainly by affecting the content and quality of SOM.
Mostrar más [+] Menos [-]Characterization of the reactivity and chlorinated products of carbazole during aqueous chlorination
2017
Xu, Xiong | Wang, Donghong | Li, Chunmei | Feng, Hongru | Wang, Zijian
Carbazole in source water is a potential precursor for toxic chlorocarbazoles in drinking water when chlorine is used as a disinfection agent in drinking water treatment plants. However, the reactivity of carbazole and the specific structures and predominant analogues of chlorocarbazoles produced during aqueous chlorination remain unknown. In this study, the aqueous chlorination of carbazole was performed to characterize its reactivity and the chlorinated products. Chlorocarbazoles generated from carbazole were identified by a comprehensive two-dimensional gas chromatography-mass spectrometry method, and their molecular structures were predicted by the Fukui index of electrophilic attack, f−1(r). As a result, the comprehensive chlorination pathway of carbazole was extrapolated with a total of nine chlorocarbazoles identified, including two monochlorocarbazoles (3-chlorocarbazole and 1-chlorocarbazole), four dichlorocarbazoles (3,6-dichlorocarbazole, 1,6-dichlorocarbazole, 1,3-dichlorocarbazole and 1,8-dichlorocarbazole), two trichlorocarbazoles (1,3,6-trichlorocarbazole and 1,3,8-trichlorocarbazole) and one tetrachlorocarbazole (1,3,6,8-tetrachlorocarbazole). The f−1(r) value indicates that the C1, C3, C6 and C8 atoms of carbazole were the favored positions for electrophilic attack, with the C3 and C6 atoms being the predominant sites for chlorine substitution. 3-Chlorocarbazole, 3,6-dichlorocarbazole, 1,3,6-trichlorocarbazole and 1,3,6,8-tetrachlorocarbazole were the major analogues of each chlorocarbazole group; however, the production of minor analogues such as 1-chlorocarbazole and 1,6-dichlorocarbazole should not be overlooked. The chlorination of carbazole was a pseudo first order reaction with a reaction rate of 0.1836 nmol/(L· h) and half-life of 3.77 h (pH = 6.4, Cl2 = 4.7 mg/L), and the chlorination rate of carbazole was approximately 5 times faster than that of an known chlorination precursor pyrene. These results showed that Fukui index was efficacious to predict the chlorination sites of aromatic compounds, and that carbazole is readily transformed into toxic chlorocarbazoles in drinking water treatment plants that use chlorine as a disinfection agent.
Mostrar más [+] Menos [-]Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils
2017
Chen, Kuen-Lin | Liu, Li-Chun | Chen, Wan-Ru
Many antibiotics, including sulfonamides, are being frequently detected in soil and groundwater. Livestock waste is an important source of antibiotic pollution, and sulfonamides may be present along with organic-rich substances. This study aims to investigate the sorption reaction of two sulfonamides, sulfamethoxazole (SMZ) and sulfapyridine (SPY) in two organic-rich sorbents: a commercial peat soil (38.41% carbon content) and a composted manure (24.33% carbon content). Batch reactions were conducted to evaluate the impacts of pH (4.5–9.5) and background ions (0.001 M–0.1 M CaCl2) on their sorption. Both linear partitioning and Freundlich sorption isotherms fit the reaction well. The n values of Freundlich isotherm were close to 1 in most conditions suggesting that the hydrophobic partition is the major adsorption mechanism. In terms of SMZ, Kd declined with increases in the pH. SPY has a pyridine group that is responsible for adsorption at high pH values, and thus, no significant trend between Kd and pH was observed. At high pH ranges, SPY sorption deviated significantly from linear partitioning. The results suggested the sorption mechanism of these two sulfonamide antibiotics tended to be hydrophobic partitioning under most of the experimental conditions, especially at pH values lower than their corresponding pKa2. The fluorescence excitation emission matrix and dissolved organic carbon leaching test suggested composted manure has higher fulvic acid organics and that peat soil has higher humus-like organics. Small organic molecules showed stronger affinity toward sulfonamide antibiotics and cause the composted manure to exhibit higher sorption capacity. Overall, this study suggests that the chemical structure and properties of sulfonamides antibiotics and the type of organic matter in soils will greatly influence the fate and transport of these contaminants into the environment.
Mostrar más [+] Menos [-]Sources of hydrocarbons in urban road dust: Identification, quantification and prediction
2016
Mummullage, Sandya | Egodawatta, Prasanna | Ayoko, G. A. (Godwin A.) | Goonetilleke, Ashantha
Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures.
Mostrar más [+] Menos [-]Progestagens for human use, exposure and hazard assessment for the aquatic environment
2009
Besse, Jean-Philippe | Garric, Jeanne
Little information is available on the environmental occurrence and ecotoxicological effects of pharmaceutical gestagens released in the aquatic environment. Since eighteen different gestagens were found to be used in France, preliminary exposure and hazard assessment were done. Predicted environmental concentrations (PECs) suggest that if parent gestagens are expected to be found in the ng l−1 range, some active metabolites could be present at higher concentrations, although limited data on metabolism and environmental fate limit the relevance of PECs. The biological effects are not expected to be restricted to progestagenic activity. Both anti-androgenic activity (mainly for cyproterone acetate, chlormadinone acetate and their metabolites) and estrogenic activity (mainly for reduced metabolites of levonorgestrel and norethisterone) should also occur. All these molecules are likely to have a cumulative effect among themselves or with other xenoestrogens. Studies on occurrence, toxicity and degradation time are therefore needed for several of these compounds. Gestagens exposure and hazard assessment for the aquatic environment.
Mostrar más [+] Menos [-]Molecular characterization of copper in soils using X-ray absorption spectroscopy
2009
Strawn, Daniel G. | Baker, Leslie L.
Bioavailability of Cu in the soil is a function of its speciation. In this paper we investigated Cu speciation in six soils using X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and synchrotron-based micro X-ray fluorescence (μ-XRF). The XANES and EXAFS spectra in all of the soils were the same. μ-XRF results indicated that the majority of the Cu particles in the soils were not associated with calcium carbonates, Fe oxides, or Cu sulfates. Principal component analysis and target transform of the XANES and EXAFS spectra suggested that Cu adsorbed on humic acid (HA) was an acceptable match. Thus it appears that Cu in all of the soils is primarily associated with soil organic matter (SOM). Theoretical fitting of the molecular structure in the soil EXAFS spectra revealed that the Cu in the soils existed as Cu atoms bound in a bidentate complex to O or N functional groups.
Mostrar más [+] Menos [-]Versatile in silico modeling of XAD-air partition coefficients for POPs based on abraham descriptor and temperature
2022
Tao, Cuicui | Chen, Ying | Tao, Tianyun | Cao, Zaizhi | Chen, Wenxuan | Zhu, Tengyi
The concentration of persistent organic pollutants (POPs) makes remarkable difference to environmental fate. In the field of passive sampling, the partition coefficients between polystyrene-divinylbenzene resin (XAD) and air (i.e., KXAD₋A) are indispensable to obtain POPs concentration, and the KXAD₋A is generally thought to be governed by temperature and molecular structure of POPs. However, experimental determination of KXAD₋A is unrealistic for countless and novel chemicals. Herein, the Abraham solute descriptors of poly parameter linear free energy relationship (pp-LFER) and temperature were utilized to develop models, namely pp-LFER-T, for predicting KXAD₋A values. Two linear (MLR and LASSO) and four nonlinear (ANN, SVM, kNN and RF) machine learning algorithms were employed to develop models based on a data set of 307 sample points. For the aforementioned six models, R²ₐdⱼ and Q²ₑₓₜ were both beyond 0.90, indicating distinguished goodness-of-fit and robust generalization ability. By comparing the established models, the best model was observed as the RF model with R²ₐdⱼ = 0.991, Q²ₑₓₜ = 0.935, RMSEₜᵣₐ = 0.271 and RMSEₑₓₜ = 0.868. The mechanism interpretation revealed that the temperature, size of molecules and dipole-type interactions were the predominant factors affecting KXAD₋A values. Concurrently, the developed models with the broad applicability domain provide available tools to fill the experimental data gap for untested chemicals. In addition, the developed models were helpful to preliminarily evaluate the environmental ecological risk and understand the adsorption behavior of POPs between XAD membrane and air.
Mostrar más [+] Menos [-]Experimental and theoretical insight into hydroxyl and sulfate radicals-mediated degradation of carbamazepine
2020
Xiao, Ruiyang | Ma, Junye | Luo, Zonghao | Zeng, Weizhi | Wei, Zongsu | Spinney, Richard | Hu, Wei‒Ping | Dionysiou, Dionysios D.
Carbamazepine (CBZ), a widely detected pharmaceutical in wastewaters, cannot currently be treated by conventional activated sludge technologies, as it is highly resistant to biodegradation. In this study, the degradation kinetics and reaction mechanisms of CBZ by hydroxyl radical (OH) and sulfate radical (▪)–based advanced oxidation processes (AOPs) were investigated with a combined experimental/theoretical approach. We first measured the UV absorption spectrum of CBZ and compared it to the theoretical spectrum. The agreement of two spectra reveals an extended π–conjugation system on CBZ molecular structure. The second–order rate constants of OH and ▪ with CBZ, measured by competition kinetics method, were (4.63 ± 0.01) × 10⁹ M⁻¹ s⁻¹ and (8.27 ± 0.01) × 10⁸ M⁻¹ s⁻¹, respectively at pH 3. The energetics of the initial steps of CBZ reaction with OH and ▪ were also calculated by density functional theory (DFT) at SMD/M05–2X/6–311++G**//M05–2X/6–31 + G**level. Our results reveal that radical addition is the dominant pathway for both OH and ▪. Further, compared to the positive ΔGR0 value for the single electron transfer (SET) reaction pathway between CBZ and OH, the ΔGR0 value for SET reaction between CBZ and ▪ is negative, showing that this reaction route is thermodynamically favorable. Our results demonstrated the remarkable advantages of AOPs for the removal of refractory organic contaminants during wastewater treatment processes. The elucidation of the pathways for the reaction of OH and ▪ with CBZ are beneficial to predict byproducts formation and assess associated ecotoxicity, providing an evaluation mean for the feasibility of AOPs application.
Mostrar más [+] Menos [-]Redox reactions between chromium(VI) and hydroquinone: Alternative pathways for polymerization of organic molecules
2020
Tzou, Yu-Min | Chen, Kai-Yue | Cheng, Ching-Yun | Lee, Way-Zen | Teah, Heng Yi | Liu, Yu-Ting
Chromium (VI) reduction by organic compounds is one of the major pathways to alleviate the toxicity and mobility of Cr(VI) in the environment. However, oxidative products of organic molecules receive less scientific concerns. In this study, hydroquinone (H₂Q) was used as a representative organic compound to determine the redox reactions with Cr(VI) and the concomitant oxidative products. Spectroscopic analyses showed that Cr(III) hydroxides dominated the precipitates produced during redox reactions of Cr(VI) and H₂Q. For the separated filtrates, the acidification induced the oxidative polymerization of organic molecules, accompanied with the complexation with Cr(III). The aromatic domains dominated the chemical structures of the black and fluffy organic polymers, which was different to the natural humic acids due to the shortage of aliphatic chains. Results of linear combination fitting (LCF) for Cr K-edge X-ray absorption near edge structure (XANES) spectra demonstrated that up to 90.4% of Cr inventory in precipitates derived after the acidification of filtrates was Cr(III) complexed with humic-like polymers, suggesting that Cr(III) possibly acted as a linkage among organic molecules during the polymerization processes of H₂Q. This study demonstrated that Cr(VI) may lead to the polymerization of organic molecules in an acidic solution, and thus, it could raise scientific awareness that the oxidative decomposition of organic molecules may not be the only pathway while interacting with the strong oxidant of Cr(VI).
Mostrar más [+] Menos [-]