Refinar búsqueda
Resultados 1-10 de 96
Optimization of Detention Time for Domestic Wastewater Treatment using Phycoremediation
2022
Moondra, Nandini | Jariwala, Namrata | Christian, Robin
In developing countries, wastewater treatment is confined to secondary systems. Hence even after treatment, wastewater effluent has a high level of nutrients which causes eutrophication and has destructive impacts on receiving bodies. Literature reveals that phycoremediation can be the best solution to address the problem faced but is time-consuming, ranging from days to weeks. Hence, the present study aimed to determine an optimum detention time for the microalgal system to treat domestic wastewater. The retention time for treatment in the study was divided into an aeration and settling periods. During the study, aeration time varied from 2 hours to 24 hours, followed by 1-hour settling period for each aeration time. Optimum detention time for microalgal treatment was obtained at 11 hours of detention time (10 hours aeration and 1-hour settling). Parameters analyzed during the study were pH, EC, TS, TSS, TDS, nitrate, phosphate, ammonia, COD and DO. However, the main focus was on nutrients (phosphate and ammonia) and organics (COD) removal while determining the optimum detention time. Maximum removal efficiency obtained for COD, ammonia and phosphate for non-filtered effluent was 75.61%, 90.63% and 83.29%, respectively. However, removal efficiency further increased for filtered effluents to 86.34%, 100% and 91.12% for COD, ammonia and phosphate, respectively. Algal treatment offers an ecologically safe and more affordable system for nutrient removal and eliminates the need for tertiary treatment.
Mostrar más [+] Menos [-]A simple and rapid algal assay kit to assess toxicity of heavy metal-contaminated water
2021
Eom, Heonseop | Park, Minseung | Jang, Am | Kim, Seunggyu | Oh, Sang-Eun
This study presents a novel algal-based toxicity test suitable for simple and rapid assessment of heavy metal (Hg2+, Cr6+, Cd2+, Pb2+, or As3+)-contaminated water. A closed-system kit-type algal assay was developed using Chlorella vulgaris. Toxicity was assessed by oxygen evolution in the gaseous phase of the assay kits, which was measured via a needle-type oxygen sensor. Initial cell density, light intensity, and exposure time that enabled favorable test performance for the algal assay kits were 103 cells/mL, 250 μmol m-2s-1, and 18 h, respectively. Results from the heavy metal toxicity tests demonstrate that Hg2+, Cr6+, Cd2+, and Pb2+ are more toxic in inhibiting algal photosynthetic activity than As3+. The 18 h half-maximum effective concentrations (EC50) for Hg2+, Cr6+, Cd2+, Pb2+, and As3+ were determined to be 31.3 ± 0.5, 179.6 ± 7.5, 301.3 ± 6.1, 476.1 ± 10.5, and 2184.1 ± 31.1 μg/L, respectively. A strong correlation between oxygen concentrations in the headspace of the assay kits and chlorophyll a production indicates that oxygen evolution in the gaseous phase is able to represent algal photosynthetic activity and serve as the end-point in algal toxicity tests. High test sensitivity and reproducibility as well as an easy test protocol and rapid processing time make the algal assay kit a suitable tool for simple and rapid toxicity testing of heavy metal-contaminated water.
Mostrar más [+] Menos [-]A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris
2020
Wang, Lei | Huang, Xulei | Sun, Weiling | Too, Hui Zhen | Laserna, Anna Karen Carrasco | Li, Sam Fong Yau
To compare aquatic organisms’ responses to the toxicity of copper oxide (CuO) nanoparticles (NPs) with those of CuO microparticles (MPs) and copper (Cu) ions, a global metabolomics approach was employed to investigate the changes of both polar and nonpolar metabolites in microalga Chlorella vulgaris after 5-day exposure to CuO NPs and MPs (1 and 10 mg/L), as well as the corresponding dissolved Cu ions (0.08 and 0.8 mg/L). Unchanged growth, slight reactive oxygen species production, and significant membrane damage (at 10 mg/L CuO particles) in C. vulgaris were demonstrated. A total of 75 differentiated metabolites were identified. Most metabolic pathways perturbed after CuO NPs exposure were shared by those after CuO MPs and Cu ions exposure, including accumulation of chlorophyll intermediates (max. 2.4–5.2 fold), membrane lipids remodeling for membrane protection (decrease of phosphatidylethanolamines (min. 0.6 fold) and phosphatidylcholines (min. 0.2–0.7 fold), as well as increase of phosphatidic acids (max. 1.5–2.9 fold), phosphatidylglycerols (max. 2.2–2.3 fold), monogalactosyldiacylglycerols (max. 1.2–1.4 fold), digalactosylmonoacylglycerols (max. 1.9–3.8 fold), diacylglycerols (max. 1.4 fold), lysophospholipids (max. 1.8–3.0 fold), and fatty acids (max. 3.0–6.2 fold)), perturbation of glutathione metabolism induced by oxidative stress, and accumulation of osmoregulants (max. 1.3–2.6 fold) to counteract osmotic stress. The only difference between metabolic responses to particles and those to ions was the accumulation of fatty acids oxidation products: particles caused higher fold changes (particles/ions ratio 1.9–3.0) at 1 mg/L and lower fold changes (particles/ions ratio 0.4–0.7) at 10 mg/L compared with ions. Compared with microparticles, there was no nanoparticle-specific pathway perturbed. These results confirm the predominant role of dissolved Cu ions on the toxicity of CuO NPs and MPs, and also reveal particle-specific toxicity from a metabolomics perspective.
Mostrar más [+] Menos [-]Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium
2020
Zhou, Chuanqi | Huang, Jung-Chen | Zheng, Lixin | He, Shengbing | Zhou, Weili
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9–74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3–100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40–87.24 μg Cr/g DW) or adults (19.41–50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7–94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1–1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
Mostrar más [+] Menos [-]Quantitative assessment of photosynthetic activity of Chlorella (Class Trebouxiophyceae) adsorbed onto soil by using fluorescence imaging
2019
Nam, Sun-Hwa | Lee, Jieun | An, Youn-Joo
In the present study, we evaluate our previously developed non-destructive soil algal toxicity method using species from a different class of algae; Class Trebouxiophyceae (Chlorella vulgaris and Chlorella sorokiniana), and directly measure the photosynthetic activity of these species adsorbed onto the soil as a new toxicity endpoint. This study shows that non-destructive soil algal toxicity method is applicable to non-specific test species, including those of Class Trebouxiophyceae as well as Class Chlorophyceae (Chlorococcum infusionum and Chlamydomonas reinhardtii). Furthermore, by performing photosynthesis image analysis, we verify that it is possible to measure the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soils without the need to extract algal cells from the soil. We propose that the non-destructive soil algal toxicity method represents a novel technique for 1) evaluating pollutants in soil using non-specific algae and 2) conveniently and rapidly assessing the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soil as a new toxicity endpoint.
Mostrar más [+] Menos [-]Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris
2018
Qian, Le | Qi, Suzhen | Cao, Fangjie | Zhang, Jie | Zhao, Feng | Li, Changping | Wang, Chengju
Boscalid is one of the most frequently detected pesticides in main coastal estuaries in California, with concentrations as high as 36 μg/L. However, ecotoxicology information about boscalid to aquatic organisms is scarce. To investigate toxic effects and mechanisms of boscalid on freshwater algae Chlorella vulgaris (C. vulgaris), C. vulgaris were exposed to a range of boscalid concentrations (0, 0.8, 1.6, 2.4 and 3.2 mg/L) for 96 h to study the changes in photosynthetic pigment contents, responses of the antioxidant enzyme system and alterations in endogenous substances. Results indicated that the growth of algae and the content of chlorophyll and carotenoids were significantly inhibited by 1.6 mg/L boscalid. Reactive oxygen species (ROS) and oxidative damage of C. vulgaris could be induced by boscalid, in accordance with significant changes in ROS levels and a series of antioxidant enzyme activities. Moreover, the alterations in endogenous substances showed that boscalid could affect photosynthesis and energy metabolism of C. vulgaris. These results demonstrated that boscalid could induce impacts on C. vulgaris mainly through disturbing the photosynthesis, oxidative damage and energy metabolism. The present study provided a better understanding of the negative effects and mechanisms of bosaclid in microalgae.
Mostrar más [+] Menos [-]Solar photocatalytic degradation of ibuprofen with a magnetic catalyst: Effects of parameters, efficiency in effluent, mechanism and toxicity evolution
2021
Gong, Han | Zhu, Wei | Huang, Yumei | Xu, Lijie | Chen, Meijuan | Yan, Muting
The environmental-friendly photocatalytic process with a magnetic catalyst CoFe₂O₄/TiO₂ mediated by solar light for ibuprofen (IBP) degradation in pure water, wastewater effluent and artificial seawater was investigated systematically. The study aims to reveal the efficiency, the mechanism and toxicity evolution during IBP degradation. Hydroxyl radicals and photo-hole (h⁺) were found to contribute to the IBP decay. The presence of SO₄²⁻ showed no significant effect, while NO₃⁻ accelerated the photodegradation, and other anions including HCO₃⁻, Cl⁻, F⁻, and Br⁻ showed significant inhibition. The removal efficiency was significantly elevated with the addition of peroxymonosulfate (PMS) or persulfate (PS) ([Oxidant]₀:[IBP]₀ = 0.4–4), with reaction rate of 5.3–13.1 and 1.3–2.9 times as high as the control group, respectively. However, the reaction was slowed down with the introduction of H₂O₂. A mathematic model was employed to describe the effect of ferrate, high concentration or stepwise addition of ferrate was suggested to play a positive role in IBP photodegradation. Thirteen transformation products were identified and five of them were newly reported. The degradation pathways including hydroxylation, the benzene ring opening and the oxidation of carbon were proposed. IBP can be efficiently removed when spiked in wastewater and seawater despite the decreased degradation rate by 41% and 56%, respectively. Compared to the IBP removal, mineralization was relatively lower. The adverse effect of the parent compound IBP to the green algae Chlorella vulgaris was gradually eliminated with the decomposition of IBP. The transformation product C178a which possibly posed toxicity to rotifers Brachionus calyciflorus can also be efficiently removed, indicating that the photocatalysis process is effective in IBP removal, mineralization and toxicity elimination.
Mostrar más [+] Menos [-]The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom
2020
Yin, Jingyu | Fan, Wenhong | Du, Juan | Feng, Weiying | Dong, Zhaomin | Liu, Yingying | Zhou, Tingting
Though the main toxic mechanisms of graphene oxide (GO) to algae have been accepted as the shading effect, oxidative stress and mechanical damage, the effect of algal characteristics on these three mechanisms of GO toxicity have seldom been taken into consideration. In this study, we investigated GO toxicity to green algae (Chlorella vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii), cyanobacteria (Microcystis aeruginosa) and diatoms (Cyclotella sp.). The aim was to assess how the physiological characteristics of algae affect the toxicity of GO. Results showed that 10 mg/L of GO significantly inhibited the growth of all tested algal types, while S. obliquus and C. reinhardtii were found to be the most susceptible and tolerant species, respectively. Then, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the physiological characteristics of the assessed algae. The presence of locomotive organelles, along with smaller and more spherical cells, was more likely to alleviate the shading effect. Variations in cell wall composition led to different extents of mechanical damage as shown by Cyclotella sp. silica frustules and S. obliquus autosporine division being prone to damage. Meanwhile, growth inhibition and cell division were significantly correlated with the oxidative stress and membrane permeability, suggesting the latter two indicators can effectively signal GO toxicity to algae. The findings of this study provide novel insights into the toxicity of graphene materials in aquatic environments.
Mostrar más [+] Menos [-]Proteomics reveals surface electrical property-dependent toxic mechanisms of silver nanoparticles in Chlorella vulgaris
2020
Zhang, Jilai | Shen, Lin | Xiang, Qianqian | Ling, Jian | Zhou, Chuanhua | Hu, Jinming | Chen, Liqiang
Silver nanoparticles (AgNPs) are known to exert adverse effects on both humans and aquatic organisms; however, the toxic mechanisms underlying these effects remain unclear. In this study, we investigated the toxic mechanisms of various AgNPs with different surface electrical properties in the freshwater algae Chlorella vulgaris using an advanced proteomics approach with Data-Independent Acquisition. Citrate-coated AgNPs (Cit-AgNPs) and polyethyleneimine-coated AgNPs (PEI-AgNPs) were selected as representatives of negatively and positively charged nanoparticles, respectively. Our results demonstrated that the AgNPs exhibited surface electrical property-dependent effects on the proteomic profile of C. vulgaris. In particular, the negatively charged Cit-AgNPs specifically regulated mitochondrial function-related proteins, resulting in the disruption of several associated metabolic pathways, such as those related to energy metabolism, oxidative phosphorylation, and amino acid synthesis. In contrast, the positively charged PEI-AgNPs primarily targeted ribosome function-related proteins and interrupted pathways of protein synthesis and DNA genetic information transmission. In addition, Ag⁺ ions released from the AgNPs had a significant influence on protein regulation and the induction of cellular stress. Collectively, our findings provide new insight into the surface electrical property-dependent proteomic effects of AgNPs on C. vulgaris and should improve our understanding of the toxic mechanisms of AgNPs in freshwater algae.
Mostrar más [+] Menos [-]Removal of selenium containing algae by the bivalve Sinanodonta woodiana and the potential risk to human health
2018
Zhou, Chuanqi | Huang, Jung-Chen | Liu, Fang | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals and humans with a relatively narrow margin between nutritional essentiality and potential toxicity. Even though our previous studies have demonstrated algae could efficiently remove Se, mainly through volatilization, concern is raised about eco-risks posed by the remaining Se in algae. Here, Sinanodonta woodiana was investigated as a biofilter for the removal of Se-containing Chlorella vulgaris and for its potential risk to human health. Our results suggest filtration rates of S. woodiana were independent of Se levels in algal biomass, with a removal efficiency of between 60 and 78%. However, Se concentrations accumulated in mussels were significantly correlated with algal-borne Se levels, with a dietary assimilation efficiency ranging from 12% to 46%. Thus, a pilot biofiltration system was set up to assess uptake and depuration processes. The system was found to efficiently remove Se laden algae through the uptake by mussels, while 21% of Se in mussels could be depurated in 6 days. Among tissues, gills accumulated the highest Se concentration after assimilating algal-borne Se but shed Se compounds in the fastest pace during depuration. Health risks posed by consumption of mussels exposed to different sources of Se were further assessed. S. woodiana accumulated the highest Se concentration after exposure to waterborne SeMet, followed by dietary Se, selenite and control. The relatively higher Se levels were found in gills for all the treatments. After boiling, the most common method of cooking mussels, the greatest reduction in Se concentration occurred in mantle for the control and dietary Se groups and in muscle for the SeMet and selenite treatments. Therefore, within the safe limits, Se-containing mussels can be consumed as a dietary supplement. Overall, our research suggests incorporation of mussels into an algal treatment system can improve Se removal efficiency and also provide financial incentives for practitioners.
Mostrar más [+] Menos [-]