Refinar búsqueda
Resultados 1-10 de 78
B-type esterases in the snail <em>Xeropicta derbentina</em>: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure
2009
Laguerre, Christel | Sanchez-Hernandez, Juan C. | Köhler, Heinz-R. | Triebskorn, Rita | Capowiez, Yvan | Rault, Magali | Mazzia, Christophe | Abeilles et Environnement (AE) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Santé Végétale (SV) ; Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB) | Universidad de Castilla-La Mancha = University of Castilla-La Mancha (UCLM) | Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen | Steinbeis Transfer-Center for Ecotoxicology and Ecophysiology | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA)
International audience | The study was prompted to characterize the B-type esterase activities in the terrestrial snail <em>Xeropicta derbentina</em> and to evaluate its sensitivity to organophosphorus and carbamate pesticides. Specific cholinesterase and carboxylesterase activities were mainly obtained with acetylthiocholine (Km =77.2 mM; Vmax= 38.2 mU/mg protein) and 1-naphthyl acetate (Km= 222 mM, Vmax= 1095 mU/mg protein) substrates, respectively. Acetylcholinesterase activity was concentration-dependently inhibited by chlorpyrifos-oxon, dichlorvos, carbaryl and carbofuran (IC50 =1.35 x 105–3.80 x 108 M). The organophosphate-inhibited acetylcholinesterase activity was reactivated in the presence of pyridine-2- aldoxime methochloride. Carboxylesterase activity was inhibited by organophosphorus insecticides (IC50 =1.20 x 105–2.98 x 108 M) but not by carbamates. B-esterase-specific differences in the inhibition by organophosphates and carbamates are discussed with respect to the buffering capacity of the carboxylesterase to reduce pesticide toxicity. These results suggest that B-type esterases in<em> X. derbentina</em> are suitable biomarkers of pesticide exposure and that this snail could be used as sentinel species in field monitoring of Mediterranean climate regions
Mostrar más [+] Menos [-]The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms
2022
Santos, Joana | Barreto, Angela | Sousa, Érika M.L. | Calisto, Vânia | Amorim, Mónica J.B. | Maria, Vera L.
Once in the aquatic ecosystems, nanoplastics (NPls) can interact with other contaminants acting as vectors of transport and altering their toxicological effects towards organisms. Thus, the present study aims to investigate how polystyrene NPls (44 nm) interact with the herbicide phenmedipham (PHE) and affect its toxicity to zebrafish embryos. Single exposures to 0, 0.015, 0.15, 1.5, 15 and 150 mg/L NPls and 0.02, 0.2, 2 and 20 mg/L PHE were performed. Embryos were also exposed to the binominal combinations: 0.015 mg/L NPls + 2 mg/L PHE, 0.015 mg/L NPls + 20 mg/L PHE, 1.5 mg/L NPls + 2 mg/L PHE and 1.5 mg/L NPls + 20 mg/L PHE. Due to the low solubility of PHE in water, a solvent control was performed (0.01% acetone). PHE was quantified. Mortality, heartbeat and hatching rate, malformations appearance, locomotor behavior and biomarkers related to oxidative stress, neurotransmission and energy budgets were analyzed. During 96 h, NPls and PHE single and combined exposures did not affect embryos development. After 120 h, NPls induced hyperactivity and PHE induced hypoactivity. After 96 h, NPls increased catalase activity and PHE increased glutathione S-transferases activity. On the combination 0.015 mg/L NPls + 20 mg/L PHE, hyperactivity behavior was found, similar to 0.015 mg/L NPls, and cholinesterase activity was inhibited. Additionally, the combination 1.5 mg/L NPls + 20 mg/L PHE increased both catalase and glutathione S-transferases activities. The combination NPls with PHE affected more biochemical endpoints than the single exposures, showing the higher effect of the binominal combinations. Dissimilar interactions effects – no interaction, synergism and antagonism – between NPls and PHE were found. The current study shows that the effects of NPls on bioavailability and toxicity of other contaminants (e.g. PHE) cannot be ignored during the assessment of NPls environmental behavior and risks.
Mostrar más [+] Menos [-]Shedding light on toxicity of SARS-CoV-2 peptides in aquatic biota: A study involving neotropical mosquito larvae (Diptera: Culicidae)
2021
Mendonça-Gomes, Juliana Moreira | Charlie-Silva, Ives | Guimarães, Abraão Tiago Batista | Estrela, Fernanda Neves | Calmon, Marilia Freitas | Miceli, Rafael Nava | Sanches, Paulo R.S. | Bittar, Cíntia | Rahal, Paula | Cilli, Eduardo M. | Ahmed, Mohamed Ahmed Ibrahim | Vogel, Christoph F.A. | Malafaia, Guilherme
Knowledge about how the COVID-19 pandemic can affect aquatic wildlife is still extremely limited, and no effect of SARS-CoV-2 or its structural constituents on invertebrate models has been reported so far. Thus, we investigated the presence of the 2019-new coronavirus in different urban wastewater samples and, later, evaluated the behavioral and biochemical effects of the exposure of Culex quinquefasciatus larvae to two SARS-CoV-2 spike protein peptides (PSPD-2002 and PSPD-2003) synthesized in our laboratory. Initially, our results show the contamination of wastewater by the new coronavirus, via RT-qPCR on the viral N1 gene. On the other hand, our study shows that short-term exposure (48 h) to a low concentration (40 μg/L) of the synthesized peptides induced changes in the locomotor and the olfactory-driven behavior of the C. quinquefascitus larvae, which were associated with increased production of ROS and AChE activity (cholinesterase effect). To our knowledge, this is the first study that reports the indirect effects of the COVID-19 pandemic on the larval phase of a freshwater invertebrate species. The results raise concerns at the ecological level where the observed biological effects may lead to drastic consequences.
Mostrar más [+] Menos [-]Polyethylene glycol acute and sub-lethal toxicity in neotropical Physalaemus cuvieri tadpoles (Anura, Leptodactylidae)
2021
Nascimento, Ítalo Freitas | Guimarães, Abraão Tiago Batista | Ribeiro, Fabianne | Rodrigues, Aline Sueli de Lima | Estrela, Fernanda Neves | Luz, Thiarlen Marinho da | Malafaia, Guilherme
Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments turn assessments about its impact on amphibians an urgent matter. Accordingly, we tested the hypothesis that short-time exposure (72 h) of tadpoles belonging to the species Physalaemus cuvieri (Anura, Leptodactylidae) to PEG induces oxidative stress and neurotoxicity on them. We observed that polymer uptake in P. cuvieri occurred after exposure to 5 and 10 mg/L of PEG without inducing changes in their nitrite levels neither at the levels of substances reactive to thiobarbituric acid. However, hydrogen peroxide and reactive oxygen species production was higher in animals exposed to PEG, whose catalase and superoxide dismutase levels were not enough to counterbalance the production of these reactive species. Therefore, this finding suggests physiological changes altering REDOX homeostasis into oxidative stress. In addition, the increased activity of acetylcholinesterase and butyrylcholinesterase, and reduction in superficial neuromasts, confirmed PEG’s neurotoxic potential. To the best of our knowledge, this is the first report on PEG’s biological impact on a particular amphibian species. The study has broadened the understanding about ecotoxicological risks associated with water pollution by these polymers, as well as motivated further investigations on its impacts on amphibians’ health and on the dynamics of their natural populations.
Mostrar más [+] Menos [-]Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus)
2016
Yuan, Lilai | Li, Jiasu | Zha, Jinmiao | Wang, Zijian
Organophosphate flame retardants (OPFRs) have been detected at high concentrations in various environmental and biotic samples, but little is known about their toxicity. In this study, the potential neurotoxicity of three OPFRs (TCEP, TDCPP, and TPP) and Chlorpyrifos (CPF, an organophosphate pesticide) were compared in Chinese rare minnow using an acute toxicity test and a 21-day fish assay. The acute test demonstrated significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by CPF. Although significant AChE inhibition at high concentration of TPP was also observed, none of the OPFRs had effects similar to CPF on these enzymes, indicating that their acute toxicities to Chinese rare minnow may be unrelated to cholinesterase inhibition. In addition, the 21-day fish assay with TDCPP demonstrated no significant effects on cholinesterase activities or neurotransmitter levels. Nonetheless, this OPFR exhibited widespread effects on the neurotrophic factors and their receptors (e.g., ntf3, ntrk1, ntrk2, ngfr, and fgf2, fgf11, fgf22, fgfr4), indicating that TDCPP or other OPFRs may elicit neurological effects by targeting neurotrophic factors and their receptors in Chinese rare minnow.
Mostrar más [+] Menos [-]Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures
2022
Solé, M. | Figueres, E. | Mañanós, E. | Rojo-Solís, C. | García-Párraga, D.
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Mostrar más [+] Menos [-]Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis
2013
Tekaya, Nadèje | Saiapina, Olga | Ben Ouada, Hatem | Lagarde, Florence | Ben Ouada, Hafedh | Jaffrezic-Renault, N. (Nicole)
Enzymatic conductometric biosensor, using immobilized Arthrospira platensis cells on gold interdigitated electrodes, for the detection of pesticides in water, was elaborated. Cholinesterase activity (AChE) was inhibited by pesticides and a variation of the local conductivity was measured after addition of the substrate acetylthiocholine chloride (AChCl). The Michaelis–Menten constant (Km) was evaluated to be 1.8 mM through a calibration curve of AChCl. Inhibition of AChE was observed with paraoxon-methyl, parathion-methyl, triazine and diuron with a detection limit of 10−18 M, 10−20 M, 10−20 M and 10−12 M, respectively and the half maximal inhibitory concentration (IC50) was determined at 10−16 M, 10−20 M, 10−18 M and 10−06 M, respectively. An important decrease of response time τ90% was recorded for AChE response towards AChCl after 30 min cell exposure to pesticides. Scanning electron microscopy images revealed a degradation of the cell surface in presence of pesticides at 10−06 M.
Mostrar más [+] Menos [-]B-type esterases in the snail Xeropicta derbentina: An enzymological analysis to evaluate their use as biomarkers of pesticide exposure
2009
Laguerre, Christel | Sanchez-Hernandez, Juan C. | Köhler, Heinz R. | Triebskorn, Rita | Capowiez, Yvan | Rault, Magali | Mazzia, Christophe
The study was prompted to characterize the B-type esterase activities in the terrestrial snail Xeropicta derbentina and to evaluate its sensitivity to organophosphorus and carbamate pesticides. Specific cholinesterase and carboxylesterase activities were mainly obtained with acetylthiocholine (Km = 77.2 mM; Vmax = 38.2 mU/mg protein) and 1-naphthyl acetate (Km = 222 mM, Vmax = 1095 mU/mg protein) substrates, respectively. Acetylcholinesterase activity was concentration-dependently inhibited by chlorpyrifos-oxon, dichlorvos, carbaryl and carbofuran (IC50 = 1.35 x 10-5-3.80 x 10-8 M). The organophosphate-inhibited acetylcholinesterase activity was reactivated in the presence of pyridine-2-aldoxime methochloride. Carboxylesterase activity was inhibited by organophosphorus insecticides (IC50 = 1.20 x 10-5-2.98 x 10-8 M) but not by carbamates. B-esterase-specific differences in the inhibition by organophosphates and carbamates are discussed with respect to the buffering capacity of the carboxylesterase to reduce pesticide toxicity. These results suggest that B-type esterases in X. derbentina are suitable biomarkers of pesticide exposure and that this snail could be used as sentinel species in field monitoring of Mediterranean climate regions. Characterization of the B-type esterases in the terrestrial snail Xeropicta derbentina in order to evaluate pesticide exposure.
Mostrar más [+] Menos [-]Importance of exposure route in determining nanosilver impacts on a stream detrital processing chain
2021
Batista, Daniela | Giling, Darren P. | Pradhan, Arunava | Pascoal, Cláudia | Cássio, Fernanda | Gessner, Mark O.
The commercial use and spread of silver nanoparticles (AgNPs) in freshwaters have greatly increased over the last decade. Both AgNPs and ionic silver (Ag⁺) released from nanoparticles are toxic to organisms and compromise ecosystem processes such as leaf litter decomposition. Yet little is known about how AgNPs affect multitrophic systems of interacting species. Furthermore, past work has focused on waterborne exposure with scarce attention given to effects mediated by the consumption of contaminated food. We assessed the importance of direct (via water) and indirect (via diet) AgNP exposure to a processing chain comprising leaf litter, fungi, a shredder (Gammarus pulex) and a collector (Habroleptoides confusa) in microcosms. Direct exposure to contaminated water for 15 days impaired microbial leaf decomposition by ∼50% and leaf-associated fungal biomass by ∼10%. Leaf consumption was reduced by ∼20% but only when G. pulex was exposed to silver via contaminated leaves. There was no effect on FPOM production. Ag ⁺ could impose oxidative stress on the shredders and collectors independent of exposure route, as indicated by increased catalase and glutathione S-transferase activities and decreased superoxide dismutase activity. The activity of a neuronal enzyme (cholinesterase) in collectors, but not shredders, also decreased by almost 50% when the animals were indirectly exposed to AgNP. Our results show that AgNPs and Ag⁺ may disrupt detrital processing chains through direct and indirect exposure routes, even at low concentrations. This highlights the importance of AgNP exposure pathways to interconnected stream biota and ecosystem processes for realistic assessments of risks to freshwater ecosystems.
Mostrar más [+] Menos [-]Pesticide exposure and related health problems among family members of farmworkers in southeast Iran. A case-control study
2020
Abbasi-Jorjandi, Mojtaba | Asadikaram, Gholamreza | Abolhassani, Moslem | Fallah, Hossein | Abdollahdokht, Danial | Salimi, Fouzieh | Faramarz, Sanaz | Pournamdari, Mostafa
Pesticides used in agriculture are some of the most common pollutants in the world. This study aimed to investigate the effects of Organophosphorus Pesticides (OPPs) and Organochlorine Pesticides (OCPs) on the families of farmworkers in the southeast of Iran.In the present case-control study, 141 family members of farmworkers (as the case group) and 59 family members of non-farmworkers (as the controls) were recruited. Serum levels of OCPs such as α-HCH, β-HCH, γ-HCH, 2,4-DDE, 4,4-DDE, 2,4-DDT, and 4,4-DDT were determined. In addition, erythrocyte acetylcholinesterase (AChE) activity, malondialdehyde (MDA), total antioxidant capacity (TAC), protein carbonyl (PC), nitric oxide (NO) serum levels, arylesterase activity of paraoxonase 1 (PON-1), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity were determined in all participants. Furthermore, distance to farmlands, education, crops, type, and the number of consumed fruits were evaluated for each individual separately.The erythrocyte AChE activity and serum activities of GPx, SOD, and PON-1 and TAC levels were significantly decreased, whereas the concentration of MDA, PC, NO, and seven OCPs were significantly increased in the farmworkers’ families as compared to the controls. Spearman correlation and linear regression suggest that OCPs increase the oxidative stress in farmworkers’ family members. Moreover, distance, education, farming precedence, products, and ventilation had significant effects on the OCP levels and increased the odds ratio of OCP levels in farmworkers’ families.With regards to the data obtained in this study, it was revealed that OCPs as illegal pesticides and OPPs were higher than expected in the farmworkers’ family members. Furthermore, exposure to OCPs and OPPs, apart from the other effects on the body, leads to oxidative stress (OS) that may cause serious diseases in the exposed populations.
Mostrar más [+] Menos [-]