Refinar búsqueda
Resultados 1-10 de 830
Seasonal variation of dissolved bioaccessibility for potentially toxic elements in size-resolved PM: Impacts of bioaccessibility on inhalable risk and uncertainty Texto completo
2022
Jia, Bin | Tian, Yingze | Dai, Yuqing | Chen, Rui | Zhao, Peng | Chu, Jingjing | Feng, Xin | Feng, Yinchang
The health effects of potentially toxic elements (PTEs) in airborne particulate matter (PM) are strongly dependent on their size distribution and dissolution. This study examined PTEs within nine distinct sizes of PM in a Chinese megacity, with a focus on their deposited and dissolved bioaccessibility in the human pulmonary region. A Multiple Path Particle Dosimetry (MPPD) model was used to estimate the deposited bioaccessibility, and an in-vitro experiment with simulated lung fluid was conducted for dissolved bioaccessibility. During the non-heating season, the dissolved bioaccessible fraction (DBF) of As, Cd, Co, Cr, Mn, Pb and V were greater in fine PM (aerodynamics less than 2.1 μm) than in coarse PM (aerodynamics between 2.1 and 10 μm), and vice versa for Ni. With the increased demand of heating, the DBF of Pb and As decreased in fine particle sizes, probably due to the presence of oxide/silicate compounds from coal combustion. Inhalation health risks based on the bioaccessible concentrations of PTEs displayed the peaks in <0.43 μm and 2.1–3.3 μm particulate sizes. The non-cancer risk was at an acceptable level (95th percentiles of hazard index (HI) was 0.49), but the cancer risk exceeded the threshold value (95th percentiles of total incremental lifetime cancer risk (TCR) was 8.91 × 10⁻⁵). Based on the results of uncertainty analysis, except for the exposure frequency, the total concentrations and DBF of As and Cr in <0.43 μm particle size segment have a greater influence on the uncertainty of probabilistic risk.
Mostrar más [+] Menos [-]Lead poisoning of backyard chickens: Implications for urban gardening and food production Texto completo
2022
Yazdanparast, Tahereh | Strezov, Vladimir | Wieland, Peter | Lai, Yi-Jen | Jacob, Dorrit E. | Taylor, Mark Patrick
Increased interest in backyard food production has drawn attention to the risks associated with urban trace element contamination, in particular lead (Pb) that was used in abundance in Pb-based paints and gasoline. Here we examine the sources, pathways and risks associated with environmental Pb in urban gardens, domestic chickens and their eggs. A suite of other trace element concentrations (including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn) are reported from the sampled matrices. Sixty-nine domestic chickens from 55 Sydney urban gardens were sampled along with potential sources (feed, soil, water), blood Pb concentrations and corresponding concentrations in eggs. Age of the sampled chickens and house age was also collected. Commercial eggs (n = 9) from free range farms were analysed for comparative purposes. Study outcomes were modelled using the large Australian VegeSafe garden soil database (>20,000 samples) to predict which areas of inner-city Sydney, Melbourne and Brisbane are likely to have soil Pb concentrations unsuitable for keeping backyard chickens. Soil Pb concentrations was a strong predictor of chicken blood and egg Pb (p=<0.00001). Almost 1 in 2 (n = 31/69) chickens had blood Pb levels >20 μg/dL, the level at which adverse effects may be observed. Older homes were correlated with higher chicken blood Pb (p = 0.00002) and egg Pb (p = 0.005), and younger chickens (<12 months old) had greater Pb concentrations, likely due to increased Pb uptake during early life development. Two key findings arose from the study data: (i) in order to retain chicken blood Pb below 20 μg/dL, soil Pb needs to be < 166 mg/kg; (ii) to retain egg Pb < 100 μg/kg (i.e. a food safety benchmark value), soil Pb needs to be < 117 mg/kg. These concentrations are significantly lower than the soil Pb guideline of 300 mg/kg for residential gardens. This research supports the conclusion that a large number of inner-city homes may not be suitable for keeping chickens and that further work regarding production and consumption of domestic food is warranted.
Mostrar más [+] Menos [-]Decisive role of ozone formation control in winter PM2.5 mitigation in Shenzhen, China Texto completo
2022
Tang, Meng-Xue | Huang, Xiao Feng | Sun, Tian-Le | Cheng, Yong | Luo, Yao | Chen, Zheng | Lin, Xiao-Yu | Cao, Li-Ming | Zhai, Yu-Hong | He, Ling-Yan
During the COVID-19 lockdown, atmospheric PM₂.₅ in the Pearl River Delta (PRD) showed the highest reduction in China, but the reasons, being a critical question for future air quality policy design, are not yet clear. In this study, we analyzed the relationships among gaseous precursors, secondary aerosols and atmospheric oxidation capacity in Shenzhen, a megacity in the PRD, during the lockdown period in 2020 and the same period in 2021. The comprehensive observational datasets showed large lockdown declines in all primary and secondary pollutants (including O₃). We found that, however, the daytime concentrations of secondary aerosols during the lockdown period and normal period were rather similar when the corresponding odd oxygen (Oₓ≡O₃+NO₂, an indicator of photochemical processing avoiding the titration effect of O₃ by freshly emitted NO) were at similar levels. Therefore, reduced Oₓ, rather than the large reduction in precursors, was a direct driver to achieve the decline in secondary aerosols. Moreover, Oₓ was also found to determine the spatial distribution of intercity PM₂.₅ levels in winter PRD. Thus, an effective strategy for winter PM₂.₅ mitigation should emphasize on control of winter O₃ formation in the PRD and other regions with similar conditions.
Mostrar más [+] Menos [-]Dual-carbon isotope constraints on source apportionment of black carbon in the megacity Guangzhou of the Pearl River Delta region, China for 2018 autumn season Texto completo
2022
Jiang, Fan | Liu, Junwen | Cheng, Zhineng | Ding, Ping | Xu, Yuanqian | Zong, Zheng | Zhu, Sanyuan | Zhou, Shengzhen | Yan, Caiqing | Zhang, Zhisheng | Zheng, Junyu | Tian, Chongguo | Li, Jun | Zhang, Gan
Black carbon (BC) aerosol negatively affects air quality and contributes to climate warming globally. However, little is known about the relative contributions of different source control measures to BC reduction owing to the lack of powerful source-diagnostic tools. We combine the fingerprints of dual-carbon isotope using an optimized Bayesian Markov chain Monte Carlo (MCMC) scheme and for the first time to study the key sources of BC in megacity Guangzhou of the Pearl River Delta (PRD) region, China in 2018 autumn season. The MCMC model-derived source apportionment of BC shows that the dominant contributor is petroleum combustion (39%), followed by coal combustion (34%) and biomass burning (27%). It should be noted that the BC source pattern is highly sensitive to the variations of air masses transported with an enhanced contribution of fossil source from the eastern area, suggesting the important impact of regional atmospheric transportation on the BC source profile in the PRD region. Also, we further found that fossil fuel combustion BC contributed 84% to the total BC reduction during 2013–2018. The response of PM₂.₅ concentration to the ¹⁴C-derived BC source apportionment is successfully fitted (r = 0.90) and the results predicted that it would take ∼6 years to reach the WHO PM₂.₅ guideline value (10 μg m⁻³) for the PRD region if the emission control measures keep same as they are at present. Taken together, our findings suggest that dual-carbon isotope is a powerful tool in constraining the source apportionment of BC for the evaluations of air pollution control and carbon emission measures.
Mostrar más [+] Menos [-]Size−resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components Texto completo
2021
Tian, Yingze | Harrison, Roy M. | Feng, Yinchang | Shi, Zongbo | Liang, Yongli | Li, Yixuan | Xue, Qianqian | Xu, Jingsha
This research apportioned size-resolved particulate matter (PM) contributions in a megacity in northern China based on a full year of measurements of both inorganic and organic markers. Ions, elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in 9 p.m. size fractions were analyzed. High molecular weight PAHs concentrated in fine PM, while most other organic compounds showed two peaks. Both two-way and three-way receptor models were used for source apportionment of PM in different size ranges. The three-way receptor model gave a clearer separation of factors than the two-way model, because it uses a combination of chemical composition and size distributions, so that factors with similar composition but distinct size distributions (like more mature and less mature coal combustion) can be resolved. The three-way model resolved six primary and three secondary factors. Gasoline vehicles and coal and biomass combustion, nitrate and high relative humidity related secondary aerosol, and resuspended dust and diesel vehicles (exhaust and non-exhaust) are the top two contributors to pseudo-ultrafine (<0.43 μm), fine (0.43–2.1 μm) and coarse mode (>2.1 μm) PM, respectively. Mass concentration of PM from coal and biomass combustion, industrial emissions, and diesel vehicle sources showed a bimodal size distribution, but gasoline vehicles and resuspended dust exhibited a peak in the fine and coarse mode, separately. Mass concentration of sulphate, nitrate and secondary organic aerosol exhibited a bimodal distribution and were correlated with temperature, indicating strong photochemical processing and repartitioning. High relative humidity related secondary aerosol was strongly associated with size shifts of PM, NO₃⁻ and SO₄²⁻ from the usual 0.43–0.65 μm to 1.1–2.1 μm. Our results demonstrated the dominance of primary combustion sources in the <0.43 μm particle mass, in contrast to that of secondary aerosol in fine particle mass, and dust in coarse particle mass in the Northern China megacity.
Mostrar más [+] Menos [-]Traditional and novel organophosphate esters (OPEs) in PM2.5 of a megacity, southern China: Spatioseasonal variations, sources, and influencing factors Texto completo
2021
Zeng, Yuan | Chen, She-Jun | Liang, Yao-Hui | Zhu, Chun-You | Liu, Zheng | Guan, Yu-Feng | Ma, Hui-Min | Mai, Bi-Xian
Organophosphate esters (OPEs) are ubiquitous contaminants in the environment, whereas their atmospheric processes and fate are poorly understood. The present study revealed the spatial heterogeneity and seasonal variations of traditional and novel OPEs in PM₂.₅ (particulate matter with diameters < 2.5 μm) across a megacity (including residential areas and potential source sites) in South China. Potential influencing factors on the contamination levels of OPEs were addressed. The total concentrations of 11 traditional OPEs ranging from 262 to 42,194 pg/m³ (median = 1872 pg/m³) were substantially higher than those of 10 novel OPEs (33.5–3835 pg/m³, median = 318 pg/m³). Significant spatial and temporal variations in the concentrations of most OPEs were observed. The overall district-specific contamination levels in this city showed dependence on the secondary industry sector for non-predominant OPEs and on the tertiary industry for predominant OPEs. The seasonal variations of the OPE concentrations suggest difference in their sources or influence of meteorological conditions. The correlations between the individual OPEs in PM₂.₅ are determined largely by either their applications or physicochemical properties (in particular vapor pressure). The correlations between OPE concentrations and each meteorological factor (temperature, relative humidity, wind speed, and surface solar radiation) were inconsistent (positive and negative). Wind speed had the greatest effect on the OPE levels; While most OPEs bound to PM₂.₅ were not efficiently scavenged by below-cloud rainfall. The results suggest that atmospheric half-life and Henry’s Law Constant of OPEs are also determining factors for the wind speed and rainfall influence, respectively. However, mechanisms underlying the influence of meteorological conditions on atmospheric OPEs still need further research.
Mostrar más [+] Menos [-]Oxidation and sources of atmospheric NOx during winter in Beijing based on δ18O-δ15N space of particulate nitrate Texto completo
2021
Zhang, Zhongyi | Guan, Hui | Xiao, Hongwei | Liang, Yue | Zheng, Nengjian | Luo, Li | Liu, Cheng | Fang, Xiaozhen | Xiao, Huayun
The determination of both stable nitrogen (δ¹⁵N–NO₃⁻) and stable oxygen (δ¹⁸O–NO₃⁻) isotopic signatures of nitrate in PM₂.₅ has shown potential for an approach of assessing the sources and oxidation pathways of atmospheric NOx (NO+NO₂). In the present study, daily PM₂.₅ samples were collected in the megacity of Beijing, China during the winter of 2017–2018, and this new approach was used to reveal the origin and oxidation pathways of atmospheric NOx. Specifically, the potential of field δ¹⁵N–NO₃⁻ signatures for determining the NOx oxidation chemistry was explored. Positive correlations between δ¹⁸O–NO₃⁻ and δ¹⁵N–NO₃⁻ were observed (with R² between 0.51 and 0.66, p < 0.01), and the underlying environmental significance was discussed. The results showed that the pathway-specific contributions to NO₃⁻ formation were approximately 45.3% from the OH pathway, 46.5% from N₂O₅ hydrolysis, and 8.2% from the NO₃+HC channel based on the δ¹⁸O-δ¹⁵N space of NO₃⁻. The overall nitrogen isotopic fractionation factor (εN) from NOx to NO₃⁻ on a daily scale, under winter conditions, was approximately +16.1‰±1.8‰ (consistent with previous reports). Two independent approaches were used to simulate the daily and monthly ambient NOx mixtures (δ¹⁵N-NOx), respectively. Results indicated that the monthly mean values of δ¹⁵N-NOx compared well based on the two approaches, with values of −5.5‰ ± 2.6‰, −2.7‰ ± 1.9‰, and −3.2‰ ± 2.2‰ for November, December, and January (2017–2018), respectively. The uncertainty was in the order of 5%, 5‰ and 5.2‰ for the pathway-specific contributions, the εN, and δ¹⁵N-NOx, respectively. Results also indicated that vehicular exhaust was the key contributor to the wintertime atmospheric NOx in Beijing (2017–2018). Our advanced isotopic perspective will support the future assessment of the origin and oxidation of urban atmospheric NOx.
Mostrar más [+] Menos [-]Living near an active U.S. military base in Iraq is associated with significantly higher hair thorium and increased likelihood of congenital anomalies in infants and children Texto completo
2020
Savabieasfahani, M. | Basher Ahamadani, F. | Mahdavi Damghani, A.
In Iraq, war contamination is the result of dispensed bombs, bullets, detonation of chemical and conventional weapons, and burn-pit emissions by US bases. Increases in congenital anomalies were reported from Iraqi cities post-2003. These cities were heavily bombed and encircled by US bases with burn-pits. Thorium is a radioactive compound and a direct depleted-uranium decay-product. Radioactive materials, including depleted uranium, are routinely stored in US bases and they have been shown to leak into the environment. We conducted a case-control study to investigate associations of residential proximity to Tallil Air Base, a US military base near Nasiriyah, as well as levels of uranium and thorium in hair and deciduous teeth with congenital anomalies. The study was based on a sample of 19 cases and 10 controls who were recruited during late Summer and early Fall of 2016. We developed mixed effects logistic regression models with village as the random effect, congenital anomaly as the outcome and distance to the US base and hair metal levels (one at a time) as the predictor variable, controlling for child's age, sex and paternal education. We also explored the mediation of the association between proximity to the base and congenital anomalies by hair metal levels. We found an inverse association between distance to Tallil Air Base and risk of congenital anomalies and hair levels of thorium and uranium. The results of our mediation analyses were less conclusive. Larger studies are necessary to understand the scope of war contamination and its impact on congenital anomalies in Iraq.
Mostrar más [+] Menos [-]An approach to predict population exposure to ambient air PM2.5 concentrations and its dependence on population activity for the megacity London Texto completo
2020
Singh, Vikas | Sokhi, Ranjeet S. | Kukkonen, Jaakko
A comprehensive modelling approach has been developed to predict population exposure to the ambient air PM₂.₅ concentrations in different microenvironments in London. The modelling approach integrates air pollution dispersion and exposure assessment, including treatment of the locations and time activity of the population in three microenvironments, namely, residential, work and transport, based on national demographic information. The approach also includes differences between urban centre and suburban areas of London by taking account of the population movements and the infiltration of PM₂.₅ from outdoor to indoor. The approach is tested comprehensively by modelling ambient air concentrations of PM₂.₅ at street scale for the year 2008, including both regional and urban contributions. Model analysis of the exposure in the three microenvironments shows that most of the total exposure, 85%, occurred at home and work microenvironments and 15% in the transport microenvironment. However, the annual population weighted mean (PWM) concentrations of PM₂.₅ for London in transport microenvironments were almost twice as high (corresponding to 13–20 μg/m³) as those for home and work environments (7–12 μg/m³). Analysis has shown that the PWM PM₂.₅ concentrations in central London were almost 20% higher than in the surrounding suburban areas. Moreover, the population exposure in the central London per unit area was almost three times higher than that in suburban regions. The exposure resulting from all activities, including outdoor to indoor infiltration, was about 20% higher, when compared with the corresponding value obtained assuming inside home exposure for all times. The exposure assessment methodology used in this study predicted approximately over one quarter (−28%) lower population exposure, compared with using simply outdoor concentrations at residential locations. An important implication of this study is that for estimating population exposure, one needs to consider the population movements, and the infiltration of pollution from outdoors to indoors.
Mostrar más [+] Menos [-]Elements in surface and well water from the central North China Plain: Enrichment patterns, origins, and health risk assessment Texto completo
2020
Long, Jie | Luo, Kunli
The principal aim of this study was to understand the enrichment patterns of elements in water from typical coal mine and irrigation areas. For this study, samples of surface water, shallow water, and deep water were collected from Handan, Jining, and Heze cities and their surrounding areas in the central North China Plain. The results showed that the hydrochemical characteristics were dominated by Ca–Mg–Cl and Ca–HCO₃. Elements in the studied surface water, including strontium, iron and boron, were anomalously enriched at levels more than 654, 294 and 134 times their global river water averages, respectively. The concentrations of elements in the studied area were influenced by both natural processes and anthropogenic sources, but the dominant origins of the anomalous enriched elements were bedrock weathering and soil leaching. The deep well water quality in the Handan coal mining area was good, while the poor-quality water samples in the study area were mainly distributed in the alluvial plain, which is characterized by Neogene-Quaternary sediments and aquifers. The measured hazard quotient and hazard index values indicate that the arsenic and nickel in the studied samples could pose a noncarcinogenic risk to the health of local residents, especially children. The leading source of the high arsenic levels is influenced by natural process. Monitoring plans for arsenic, iron, manganese, nitrate and other potentially harmful elements in surface water and groundwater and effective health education on pollution by these elements are essential.
Mostrar más [+] Menos [-]