Refinar búsqueda
Resultados 1-7 de 7
Structural and biological trait responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms
2014
Bayona, Yannick | Roucaute, Marc | Cailleaud, K. | Lagadic, Laurent | Basseres, A. | Caquet, Thierry | Écologie et santé des écosystèmes (ESE) ; Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST | Service environnement ; Pôle d'Etude et de Recherche de Lacq [Total] (PERL) | Serv ice environnement ; Pôle d'Etude et de Recherche de Lacq [Total] (PERL) | Service environnement ; TOTAL Pôle d'Etude et de Recherche de Lacq | Total S.A.
The sensitivity of diatom taxonomy and trait-based endpoints to chemicals has been poorly used so far in Environmental Risk Assessment. In this study, diatom assemblages in outdoor flow-through mesocosms were exposed to thiram (35 and 170 mu g/L), and a hydrocarbon emulsion (HE; 0.01, 0.4, 2 and 20 mg/L). The effects of exposure were assessed for 12 weeks, including 9 weeks post-treatment, using taxonomic structure and diversity, bioindication indices, biological traits, functional diversity indices, indicator classes and ecological guilds. For both chemicals, diversity increased after the treatment period, and responses of ecological traits were roughly identical with an abundance increase of motile taxa tolerant to organic pollution and decrease of low profile taxa. Bioindication indices were not affected. Traits provided a complementary approach to biomass measurements and taxonomic descriptors, leading to a more comprehensive overview of ecological changes due to organic chemicals, including short- and long-term effects on biofilm structure and functioning. (C) 2014 Elsevier Ltd. All rights reserved.
Mostrar más [+] Menos [-]Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms
2024
Schuijt, Lara M. | van Drimmelen, Chantal K.E. | Buijse, Laura L. | van Smeden, Jasper | Wu, Dailing | Boerwinkel, Marie Claire | Belgers, Dick J.M. | Matser, Arrienne M. | Roessink, Ivo | Beentjes, Kevin K. | Trimbos, Krijn B. | Smidt, Hauke | Van den Brink, Paul J.
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Mostrar más [+] Menos [-]Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms
2024
Schuijt, Lara M. | van Drimmelen, Chantal K.E. | Buijse, Laura L. | van Smeden, Jasper | Wu, Dailing | Boerwinkel, Marie Claire | Belgers, Dick J.M. | Matser, Arrienne M. | Roessink, Ivo | Beentjes, Kevin K. | Trimbos, Krijn B. | Smidt, Hauke | Van den Brink, Paul J.
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Mostrar más [+] Menos [-]Detecting benthic community responses to pollution in estuaries: A field mesocosm approach
2013
O'Brien, Allyson L. | Keough, Michael J.
Biological stress responses in individuals are used as indicators of pollution in aquatic ecosystems, but detecting ecologically relevant responses in whole communities remains a challenge. We developed an experimental approach to detect the effects of pollution on estuarine communities using field-based mesocosms. Mesocosms containing defaunated sediments from four estuaries in southeastern Australia that varied in sediment contamination were transplanted and buried in sediments of the same four estuaries for six weeks. Mesocosm sediment properties and metal concentrations remained representative of their source locations. In each estuary, fauna communities associated with sediments derived from the site with the highest metal concentrations were significantly different from other communities. This pattern was evident for some of the individual taxa, in particular the polychaete Capitella sp. Consistent responses across estuaries suggest numbers of individuals, and especially Capitella sp., could be used to identify contaminated sediments in estuaries with similar fauna and site characteristics.
Mostrar más [+] Menos [-]The coming of age of microbial ecotoxicology: report on the first two meetings in France | L'émergence de l'écotoxicologie microbienne: retour sur les deux premiers colloques organisés en France
2014
Ghiglione, J.F. | Martin Laurent, F. | Stachowski Haberkorn, S. | Pesce, Stéphane | Vuilleumier, Stéphane | Centre National de la Recherche Scientifique (CNRS) | Université Pierre et Marie Curie - Paris 6 (UPMC) | Institut National de la Recherche Agronomique (INRA) | Unité Biogéochimie et Ecotoxicologie (BE) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA<br/>EA ECOLDUR CT3 | International audience | Microorganisms are ubiquitous in soil, air, and water ecosystems, where they are key players of ecosystem services. Microbial ecotoxicology is an emerging interdisciplinary area of research which aims at investigating the impact of human activities on the diversity, abundance, and activity of microorganisms. In return, the results of such investigations hold the promise to provide novel ways of assessing in a sensitive way the impacts of diverse environmental disturbances and subsequent ecosystem responses. Thus and although the term itself is yet rarely encountered in the scientific literature, microbial ecotoxicology already addresses an increasing political and societal demand. In the French scientific landscape, which often mimics the famous (but sometimes indigestible) “mille-feuilles” pastry, microbial ecotoxicologists are scattered across many different research centers belonging to different research organizations and universities. This research field has thus lacked any visibility and remained unorganized until now. Formal organization of scientific activities may be considered a typical “froggies” concern (or ailment). Nevertheless, it is rather surprising that scientific journals and significant international conferences specifically devoted to microbial ecotoxicology have been missing so far, especially considering the plethoric range of journals and congresses devoted to microbial ecology and ecotoxicology. With these considerations in mind, the idea of organizing the French research community of microbial ecologists around concepts of ecotoxicology made its way, with the aim of sharing the necessity to overcome artificial boundaries that prevent progress in this promising field.
Mostrar más [+] Menos [-]Effects of the triazine herbicide, simetryn, on freshwater plankton communities in experimental ponds
1995
Kasai, F. | Hanazato, T. (Regional Environment Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305 (Japan))
Polychaete-sediment relations in Rayong, Thailand
1999
Meksumpun, C. | Meksumpun, S. (Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand))