Refinar búsqueda
Resultados 1-10 de 60
Biomonitoring of polycyclic aromatic hydrocarbons and synthetic musk compounds with Masson pine (Pinus massoniana L.) needles in Shanghai, China
2019
Wang, Xue-Tong | Zhou, Ying | Hu, Bao-Ping | Fu, Rui | Cheng, Hang-Xin
Twenty-six polycyclic aromatic hydrocarbons (PAHs) and four synthetic musk compounds (SMCs) accumulated by Masson pine needles from different areas of Shanghai were investigated in the present study. Concentrations of Σ26PAHs (sum of 26 PAHs) ranged from 234 × 10−3 to 5370 × 10−3 mg kg−1. Levels of Σ26PAHs in different sampling areas followed the order: urban areas (Puxi and Pudong) > suburbs > Chongming. Total concentrations of 16 USEPA priority PAHs ranged from 225 × 10−3 to 5180 × 10−3 mg kg−1, ranking at a relatively high level compared to other regions around the world. Factor analysis and multi-linear regression model has identified six sources of PAHs with relative contributions of 15.1% for F1 (vehicle emissions), 47.8% for F2 (natural gas and biomass combustion), 7.8% for F3 (oil), 10.6% for F4 (coal combustion), 15.7% for F5 (“anthracene” source) and 3.0% for F6 (coke tar). Total concentrations of 4 SMCs varied between 0.071 × 10−3 and 2.72 × 10−3 mg kg−1 in pine needles from Shanghai. SMCs with the highest detected frequency were Galaxolide and musk xylene, followed by musk ketone and Tonalide. The highest level of SMCs was found near industrial park and daily chemical plant. The results obtained from this study may have important reference value for local government in the control of atmospheric organic pollution.
Mostrar más [+] Menos [-]Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan
2018
Oishi, Yoshitaka
Atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem, especially in Asia, as PAHs can severely affect ecologically important mountainous areas. Using pine needles and mosses as bio-indicators, this study examined PAH pollution in a mountainous study area and evaluated the influence of transboundary PAHs. PAHs in urban areas were also evaluated for comparison. The study sites were alpine areas and urban areas (inland or coastal cities) across central Japan, in the easternmost part of Asia where atmospheric pollutants are transported from mainland Asia. The mean PAH concentrations of pine needles and mosses were 198.9 ± 184.2 ng g⁻¹ dry weight (dw) and 131.8 ± 60.7 ng g⁻¹ dw (mean ± SD), respectively. Pine needles preferentially accumulated PAHs with low molecular weights (LMW PAHs) and exhibited large differences in both PAH concentration and isomer ratios between alpine and urban sites. These differences can be explained by the strong influence of LMW PAHs emitted from domestic sources, which decreased and changed during transport from urban to alpine sites due to dry/wet deposition and photodegradation. In contrast, mosses accumulated a higher ratio of PAHs with high molecular weight (HMW PAHs). A comparison of isomer ratios showed that the PAH source for alpine moss was similar to that for northern coastal cities, which are typically influenced by long-transported PAHs from East Asia. Thus, these results indicate that alpine moss can also be strongly affected by the transboundary PAHs. It is likely that the uptake characteristics of moss, alpine climate, and alpine locations far from urban areas can strengthen the influence of transboundary pollution. Based on these results, the limitations and most effective use of bioindicators of PAH pollution for preserving alpine ecosystems are discussed.
Mostrar más [+] Menos [-]Evergreen or deciduous trees for capturing PAHs from ambient air? A case study
2016
De Nicola, Flavia | Concha Graña, Estefanía | López Mahía, Purificación | Muniategui Lorenzo, Soledad | Prada Rodríguez, Darío | Retuerto, Rubén | Carballeira, Alejo | Aboal, Jesús R. | Fernández, J Ángel
Tree canopies play a key role in the cycling of polycyclic aromatic hydrocarbons (PAHs) in terrestrial ecosystems, as leaves can capture PAHs from the air. In this study, accumulation of PAHs was compared in an evergreen species, P. pinaster, and in a deciduous species, Q. robur, in relation to some physio-morphological characteristics. For this purpose, pine needles and oak leaves collected from different sites across Galicia (NW Spain) were analysed to determine PAH contents, specific leaf area, stomatal density and conductance.Leaves and needles contained similar total amounts of PAHs. The major contribution of particle-bound PAHs in oak (the concentrations of 4- and 5-ring PAHs were two times higher, and those of 6-ring PAHs five times higher in oak than in pine) may be related to the higher specific leaf area (13 and 4 cm2 g−1 dry mass in respectively oak and pine). However, the major contribution of vapor-phase PAHs in pines may be affected by the stomatal conductance (two times higher in pine than in oak). Moreover, an increase in the diameter at breast height of trees led to an increase in accumulation of PAHs, with pine capturing higher amounts of low and medium molecular weight PAHs. The study findings underline the potential role of trees in improving air quality, taking into account the canopy biomass and life cycle.
Mostrar más [+] Menos [-]Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition
2015
Blackwell, Bradley D. | Driscoll, Charles T.
We evaluated spatial patterns of mercury (Hg) deposition through analysis of foliage and forest floor samples from 45 sites across Adirondack Park, NY. Species-specific differences in foliar Hg were evident with the lowest concentrations found in first-year conifer needles and highest concentrations found in black cherry (Prunus serotina). For foliage and forest floor samples, latitude and longitude were negatively correlated with Hg concentrations, likely because of proximity to emission sources, while elevation was positively correlated with Hg concentrations. Elemental analysis showed moderately strong, positive correlations between Hg and nitrogen concentrations. The spatial pattern of Hg deposition across the Adirondacks is similar to patterns of other contaminants that originate largely from combustion sources such as nitrogen and sulfur. The results of this study suggest foliage can be used to assess spatial patterns of Hg deposition in small regions or areas of varied topography where current Hg deposition models are too coarse to predict deposition accurately.
Mostrar más [+] Menos [-]Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations
2013
Wang, Yu | Wang, Lei | Fang, Guodong | Herath, H.M.S.K. | Wang, Yujun | Cang, Long | Xie, Zubin | Zhou, Dongmei
Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment.
Mostrar más [+] Menos [-]PCDD/F and PCB in spruce forests of the Alps
2009
Offenthaler, I. | Bassan, R. | Belis, C. | Jakobi, G. | Kirchner, M. | Kräuchi, N. | Moche, W. | Schramm, K.W. | Sedivy, I. | Simončič, P. | Uhl, M. | Weiss, P.
PCDD/F and PCB concentrations in remote mountainous spruce stands of the Central European Alps show strong geographic variation. Independent of the matrix (0.5 year old needles, humus or mineral soil), the highest pollutant levels were always found at the lateral zones of the mountain range. High levels coincided with strong precipitation, particularly along the northern margin of the study region. The most volatile PCB congener propagated farther into the colder, drier central Alps than the heavier species. Matrices with different accumulation history (needles and humus) repeatedly reflected different spatial immission patterns. Consistent with its much longer exposure, pollutant levels in humus exceeded those of needles by up to two orders of magnitude. Needle contamination varied with altitude but the vertical trends were highly variable between transsects and changed between years, too. Dioxin-like pollution of forests in the Alps shows strong geographic variation.
Mostrar más [+] Menos [-]Can pine needles indicate trends in the air pollution levels at remote sites
2009
Klánová, Jana | Čupr, Pavel | Baráková, Daniela | Šeda, Zdeněk | Anděl, Petr | Holoubek, Ivan
Data from ten years of integrated monitoring were used here to evaluate whether pine needles are a feasible tool for an assessment of long-term trends of the atmospheric contamination. Pine needles collected once a year were compared to high volume air samples collected for 24 h, every 7 days, and passive air samples integrated over 28-day periods. Results showed the same concentration patterns of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) captured in needles and high volume samples. Passive air samplers were less efficient in sampling the particle-bound compounds. Theoretical air volume equivalent to each needle sample (VEQ) was calculated as a ratio of the needle concentration over the mean air concentration. Results indicated different equivalent volumes for PAHs and organochlorines, possibly due to the faster degradation rates of PAHs in needles. The most important finding is that in the long term a needle monitoring gives very similar information on temporal trends of the atmospheric pollution as does a high volume air monitoring. Pine needle monitoring is a feasible tool for an assessment of temporal trends in the atmospheric contamination.
Mostrar más [+] Menos [-]Altitude profiles of total chlorinated paraffins in humus and spruce needles from the Alps (MONARPOP)
2009
Iozza, Saverio | Schmid, Peter | Oehme, Michael | Bassan, Rodolfo | Belis, Claudio | Jakobi, Gert | Kirchner, Manfred | Schramm, Karl-Werner | Kräuchi, Norbert | Moche, Wolfgang | Offenthaler, Ivo | Weiss, Peter | Simoncic, Primoz | Knoth, Wilhelm
Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the environment. CPs were analyzed in humus and needle samples, which were taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) at sampling sites of 7 different altitude profiles in the Alps. Gas chromatography combined with electron ionization tandem mass spectrometry (EI-MS/MS) was used for the determination of total CPs (sum of short, medium and long chain CPs). CPs were found in all samples; the concentrations varied between 7 and 199 ng g−1 dry weight (dw) and within 26 and 460 ng g−1 dw in humus and needle samples, respectively. A clear vertical tendency within the individual altitude profiles could not be ascertained. Within all altitude profiles, elevated concentrations were observed in humus samples taken between 700 and 900 m and between 1300 and 1500 m. In the needle samples no similar correlation could be observed due to higher variation of the data. For the first time, CP levels of humus and spruce needle samples from the Alps (MONARPOP) were presented including the evaluation of altitude profiles.
Mostrar más [+] Menos [-]Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation I: Temporal accumulation patterns
2009
Lehndorff, E. | Schwark, L.
Polycyclic aromatic hydrocarbons (PAHs) comprise an important group of air pollutants, with three-ring components (PAH-3) often dominating. Spatiotemporal variation in atmospheric PAH-3 can be analyzed by biomonitoring but high vapour pressure and low octanol-air-partitioning of PAH-3 cause dynamic accumulation on plant surfaces. This study for the first time shows that PAH-3 exhibit systematic accumulation trends on pine needles of 3-48 months of exposure time at six sites in Germany. Correlation of needle exposure time with PAH-3 concentration was r² = 0.83 for phenanthrene and methylphenanthrenes, r² = 0.77 for cyclopenta[def]phenanthrene, r² = 0.60 for dibenzothiophene, r² = 0.57 for dimethylphenanthrenes and r² = 0.32 for retene. Variations in PAH-3 for summer and winter collected needles emphasize vegetation-air-partitioning influence on cumulative PAH-3 loads. PAH-3 ratios calculated for needle cohorts indicate persistence of original PAH patterns thus demonstrating the source-diagnostic potential of pine needle biomonitoring, which is utilized in part II of this study where spatial distribution of PAH-3 is investigated and related to emission sources. Accumulation of volatile three-ring PAHs on pine needles was found to be systematic over a period of 50 months thus qualifying PAHs for regional air quality studies.
Mostrar más [+] Menos [-]The current state of environmental pollution with sulfur dioxide (SO2) in Poland based on sulfur concentration in Scots pine needles
2020
Likus-Cieślik, Justyna | Socha, Jarosław | Gruba, Piotr | Pietrzykowski, Marcin
The current air pollution by SO₂ due to anthropogenic pressure in Poland was assessed based on sulfur concentrations in pine needles (Pinus sylvestris L.). On 308 monitoring sample plots located in pine stands distributed across Poland, measurements were conducted in mineral soil layers (0–10 cm, 10–40 cm, 40–100 cm) and in the soil organic layer (+5–0 cm). Samples of Scots pine foliage (current-year needles) were then collected, and the sulfur concentration in these needles was determined. Based on these data, a map of the spatial variability of sulfur concentrations in pine needles was drawn. The mean sulfur concentration in the pine needles was 854.8 mg kg⁻¹ in dry mass. Higher SO₂ emissions were noted in regions influenced by industry, such as the Upper Silesia and regions under strong urban pressure. Sulfur concentrations in Scots pine needles were related to the stands' degrees of defoliation. A comparison of the current sulfur concentrations in pine needles from biomonitoring in 2015–2016 with those from previous biomonitoring (in 1983–1985, by Dmuchowski and Bytnerowicz (1995) showed that air quality has improved and SO₂ emissions have decreased.
Mostrar más [+] Menos [-]