Refinar búsqueda
Resultados 1-10 de 23
Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texto completo
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Physiologie moléculaire et adaptation (PhyMA) ; Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | College of Environmental Science and Engineering ; School of Ocean Sciences | Ligue pour la Protection des Oiseaux (LPO) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texto completo
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Physiologie moléculaire et adaptation (PhyMA) ; Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | College of Environmental Science and Engineering ; School of Ocean Sciences | Ligue pour la Protection des Oiseaux (LPO) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
International audience | Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Mostrar más [+] Menos [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texto completo
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
International audience | Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Mostrar más [+] Menos [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texto completo
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie M. | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Mostrar más [+] Menos [-]Enhanced removal of per- and polyfluoroalkyl substances in complex matrices by polyDADMAC-coated regenerable granular activated carbon Texto completo
2022
Ramos, Pia | Singh Kalra, Shashank | Johnson, Nicholas W. | Khor, Chia Miang | Borthakur, Annesh | Cranmer, Brian | Dooley, Gregory | Mohanty, Sanjay K. | Jassby, David | Blotevogel, Jens | Mahendra, Shaily
Granular activated carbon (GAC) has been used to remove per- and polyfluoroalkyl substances (PFASs) from industrial or AFFF-impacted waters, but its effectiveness can be low because adsorption of short-chained PFASs is ineffective and its sites are exhausted rapidly by co-contaminants. To increase adsorption of anionic PFASs on GAC by electrostatic attractions, we modified GAC's surface with the cationic polymer poly diallyldimethylammonium chloride (polyDADMAC) and tested its capacity in complex water matrices containing dissolved salts and humic acid. Amending with concentrations of polyDADMAC as low as 0.00025% enhanced GAC's adsorption capacity for PFASs, even in the presence of competing ions. This suggests that electrostatic interactions with polyDADMAC's quaternary ammonium functional groups helped bind organic and inorganic ions as well as the headgroup of short-chain PFASs, allowing more overall PFAS removal by GAC. Evaluating the effect of polymer dose is important because excessive addition can block pores and reduce overall PFAS removal rather than increase it. To decrease the waste associated with this adsorption strategy by making the adsorbent viable for more than one saturation cycle, a regeneration method is proposed which uses low-power ultrasound to enhance the desorption of PFASs from the polyDADMAC-GAC with minimum disruption to the adsorbent's structure. Re-modification with the polymer after sonication resulted in a negligible decrease in the sorbent's capacity over four saturation rounds. These results support consideration of polyDADMAC-modified GAC as an effective regenerable adsorbent for ex-situ concentration step of both short and long-chain PFASs from real waters with high concentrations of competing ions and low PFAS loads.
Mostrar más [+] Menos [-]Lake sediment records of persistent organic pollutants and polycyclic aromatic hydrocarbons in southern Siberia mirror the changing fortunes of the Russian economy over the past 70 years Texto completo
2018
Adams, Jennifer K. | Martins, César C. | Rose, N. L. (Neil L.) | Shchetnikov, Alexander A. | Mackay, Anson W.
Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) have previously been detected in the surface sediments, water, and endemic organisms of Lake Baikal, a UNESCO World Heritage Site. The Selenga River is the primary source of freshwater to Lake Baikal, and transports pollutants accumulating in the Selenga River basin to the lake. Sources of POPs and PAHs in the Selenga River basin grew through the 20th century. In the present study, temporal changes in the concentrations of PAHs and POPs were reconstructed from two lakes in the Selenga River basin over the past 150 years using paleolimnological techniques. Increased concentrations in PAHs and PCBs were recorded initially in the 1930s. The 1940s–1980s was the period of greatest exposure to organic contamination, and concentrations of dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs) and many PAHs peaked between the 1960s and 1980s in the two lakes. Declines in concentrations and fluxes were recorded for most PAHs and POPs in the 1980s and 1990s. Temporal trends in concentrations of total and individual compounds/congeners of PAH, PCBs, and polybrominated diphenyl ethers (PBDEs) indicate the contribution of both local and regional sources of contamination in the 20th and 21st centuries. Temporal variations in contaminants can be linked to economic and industrial growth in the former USSR after World War II and the economic decline of Russia in the late-1980s and early-1990s, as well as global trends in industrialization and development during the mid-20th century.
Mostrar más [+] Menos [-]Charting a path towards non-destructive biomarkers in threatened wildlife: A systematic quantitative literature review Texto completo
2018
Chaousis, Stephanie | Leusch, Frederic D.L. | van de Merwe, Jason P.
Threatened species are susceptible to irreversible population decline caused by adverse sub-lethal effects of chemical contaminant exposure. It is therefore vital to develop the necessary tools to predict and detect these effects as early as possible. Biomarkers of contaminant exposure and effect are widely applied to this end, and a significant amount of research has focused on development and validation of sensitive and diagnostic biomarkers. However, progress in the use biomarkers that can be measured using non-destructive techniques has been relatively slow and there are still many difficulties to overcome in the development of sound methods. This paper systematically quantifies and reviews studies that have aimed to develop or validate non-destructive biomarkers in wildlife, and provides an analysis of the successes of these methods based on the invasiveness of the methods, the potential for universal application, cost, and the potential for new biomarker discovery. These data are then used to infer what methods and approaches appear the most effective for successful development of non-destructive biomarkers of contaminant exposure in wildlife. This review highlights that research on non-destructive biomarkers in wildlife is severely lacking, and suggests further exploration of in vitro methods in future studies.
Mostrar más [+] Menos [-]Benefit-risk associated with the consumption of fish bycatch from tropical tuna fisheries Texto completo
2020
Sardenne, Fany | Bodin, Nathalie | Médieu, Anais | Antha, Marisa | Arrisol, Rona | Le Grand, Fabienne | Bideau, Antoine | Munaron, Jean-marie | Le Loc’h, François | Chassot, Emmanuel
Mercury, omega-3 (docosahexaenoic acid, DHA and eicosapentaenoic acid, EPA) and macronutrients (fat and proteins) were quantified on a wet weight (ww) basis in 20 species of fish taken as bycatch in tropical tuna fisheries. Based on a hazard quotient taking into account mercury and omega-3 contents, a benefit-risk assessment for the consumption of these pelagic species was conducted for three people categories: young children, children and adults. All fish bycatch were found to be an excellent source of proteins (min‒max = 14.4‒25.2 g/100g fillet), had low omega-6/omega-3 ratios (<1, except for silky shark), and had mercury content below the safety limits defined by sanitary agencies. Silky shark and Istiophoridae had the highest mercury contents (min‒max = 0.029‒0.317 ppm ww). Omega-3 contents were the lowest in silky shark (0.2±0.2 mg/100g fillet) and the highest in striped marlin (3.6±3.2 g/100g fillet). Billfishes (Istiophoridae, including striped marlin), minor tunas (Scombridae), and Carangidae had the highest omega-3 contents (min‒max = 0.68‒7.28 g/100g fillet). The highest hazard quotient values obtained for silky shark and great barracuda reflected a lower nutritional benefit (i.e., low omega-3 source) than risk (i.e., mercury exposure), making them not advisable for consumption. Eight species had low hazard quotients, and among them cottonmouth jack and flat needlefish were found of high health interest (high protein, moderate fat contents, and low omega-6/omega-3 ratio). A daily serving portion of 85‒200 g (according to people category) can be recommended for these species. Batfish, and to a lower extent pompano dolphinfish and brassy chub, can also be consumed safely and would provide greater health benefits than risks. These results advocate for a better access of these species to local populations.
Mostrar más [+] Menos [-]Metabolomics as a tool for in situ study of chronic metal exposure in estuarine invertebrates Texto completo
2022
Hillyer, Katie E. | Raes, Eric | Karsh, Kristen | Holmes, Bronwyn | Bissett, Andrew | Beale, David J.
Estuaries are subject to intense human use globally, with impacts from multiple stressors, such as metal contaminants. A key challenge is extending beyond traditional monitoring approaches to understand effects to biota and system function. To explore the metabolic effects of complex metal contaminants to sediment dwelling (benthic) fauna, we apply a multiple-lines-of-evidence approach, coupling environmental monitoring, benthic sampling, total metals analysis and targeted metabolomics.We characterise metabolic signatures of metal exposure in three benthic invertebrate taxa, which differed in distribution across sites and severity of metal exposure: sipunculid (very high), amphipod (high), maldanid polychaete (moderate). We observed sediment and tissue metal loads far exceeding sediment guidelines where toxicity-related adverse effects may be expected, for metals including, As, Cd, Pb, Zn and Hg.Change in site- and taxa-specific metabolite profiles was highly correlated with natural environmental drivers (sediment total organic carbon and water temperature). At the most metal influenced sites, metabolite variation was also correlated with sediment metal loads. Using supervised multivariate regression, taxa-specific metabolic signatures of increased exposure and possibility of toxic effects were characterised against multiple reference sites. Metabolic signatures varied according to each taxon and degree of metal exposure, but primarily indicated altered cysteine and methionine metabolism, metal-binding and elimination (lysosomal) activity, coupled to change in complex biosynthesis pathways, responses to oxidative stress, and cellular damage.This novel multiple-lines-of-evidence approach combining metabolomics with traditional environmental monitoring, enabled detection and characterisation of chronic metal exposure effects in situ in multiple invertebrate taxa. With capacity for application to rapid and effective monitoring of non-model species in complex environments, these approaches are critical for improved assessment and management of systems that are increasingly subject to anthropogenic drivers of change.
Mostrar más [+] Menos [-]Paracetamol degradation pathways in soil after biochar addition Texto completo
2022
Chacón, Francisco J. | Cayuela, Maria L. | Sánchez-Monedero, Miguel A.
Little is known about the effect of biochar on the degradation of paracetamol in soil, considering the ubiquity of this pollutant in the environment. Given the importance of the electrochemical properties of biochar for contaminant remediation, we investigated the influence of raw and designer redox-active biochars on paracetamol degradation in soil. Metabolite quantification indicated that a minimum of 53% of the spiked paracetamol was transformed in biochar-amended soil, resulting in the accumulation of different degradation products. The identification of these products allowed us to chart paracetamol degradation pathways in soil with and without biochar amendment. Some of the major degradation routes were observed to proceed via catechol and phenol, despite being previously described as having only a minor role in paracetamol metabolism. Additionally, a new transformation route from paracetamol to NAPQI was discovered in anaerobic soil originating from direct redox reactions on the surface of the designer biochars. These results may contribute to change our understanding of the environmental fate of paracetamol in soil and the role of biochar in its biodegradation.
Mostrar más [+] Menos [-]Benefit-risk associated with the consumption of fish bycatch from tropical tuna fisheries Texto completo
2020
Sardenne, Fany | Lamboy, Nathalie Bodin | Médieu, Anaïs | Antha, Marisa | Arrisol, Rona | Le Grand, Fabienne | Bideau, Antoine | Munaron, Jean-Marie | Le Loc’h, François | Chassot, Emmanuel
Benefit-risk associated with the consumption of fish bycatch from tropical tuna fisheries Texto completo
2020
Sardenne, Fany | Lamboy, Nathalie Bodin | Médieu, Anaïs | Antha, Marisa | Arrisol, Rona | Le Grand, Fabienne | Bideau, Antoine | Munaron, Jean-Marie | Le Loc’h, François | Chassot, Emmanuel
Mercury, omega-3 (docosahexaenoic acid, DHA and eicosapentaenoic acid, EPA) and macronutrients (fat and proteins) were quantified on a wet weight (ww) basis in 20 species of fish taken as bycatch in tropical tuna fisheries. Based on a hazard quotient taking into account mercury and omega-3 contents, a benefit-risk assessment for the consumption of these pelagic species was conducted for three people categories: young children, children and adults. All fish bycatch were found to be an excellent source of proteins (min‒max = 14.4–25.2 g/100 g fillet), had low omega-6/omega-3 ratios (<1, except for silky shark), and had mercury content below the safety limits defined by sanitary agencies. Silky shark and Istiophoridae had the highest mercury contents (min‒max = 0.029–0.317 ppm ww). Omega-3 contents were the lowest in silky shark (0.2 ± 0.2 mg/100 g fillet) and the highest in striped marlin (3.6 ± 3.2 g/100 g fillet). Billfishes (Istiophoridae, including striped marlin), minor tunas (Scombridae), and Carangidae had the highest omega-3 contents (min‒max = 0.68–7.28 g/100 g fillet). The highest hazard quotient values obtained for silky shark and great barracuda reflected a lower nutritional benefit (i.e., low omega-3 source) than risk (i.e., mercury exposure), making them not advisable for consumption. Eight species had low hazard quotients, and among them cottonmouth jack and flat needlefish were found of high health interest (high protein, moderate fat contents, and low omega-6/omega-3 ratio). A daily serving portion of 85–200 g (according to people category) can be recommended for these species. Batfish, and to a lower extent pompano dolphinfish and brassy chub, can also be consumed safely and would provide greater health benefits than risks. These results advocate for a better access of these species to local populations.
Mostrar más [+] Menos [-]