Refinar búsqueda
Resultados 1-10 de 275
Concentration and leachability of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan
2022
Hiki, Kyoshiro | Yamamoto, Hiroshi
A recently identified chemical, 2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione (6PPD-quinone; 6PPD-Q), is a transformation product of an additive used in the manufacture of tire rubber and causes acute lethality in coho salmon (Oncorhynchus kisutch) in urban watersheds. Despite its potential presence and ecotoxicity in receiving waters worldwide, information on the occurrence and fate of 6PPD-Q is limited. Here, we investigated the concentrations of 6PPD-Q and its parent chemical, 6PPD, in road dust collected from arterial and residential roads in Tokyo, Japan from May to October 2021. 6PPD-Q concentrations were highest from May to June, when atmospheric ozone concentrations are the highest in Japan; a correlation between 6PPD-Q and photochemical oxidants, as an alternative to ozone, corroborated this finding. We also found that 6PPD-Q concentrations at photochemical oxidant concentrations ranging from 35 to 47 ppbv were higher in dust collected from roads with high traffic volumes (i.e., arterial roads; median: 8.6 μg/g-OC) than in dust collected from roads with lower traffic volumes (i.e., residential roads; median: 6.3 μg/g-OC), indicating that 6PPD-Q is generated from traffic-related sources. We also found that 6PPD-Q was leached from dust particles within a few hours, with a log partitioning coefficient between organic carbon and water (KOC) of 3.2–3.5. The present results will help to understand the environmental occurrence, fate, and behavior of 6PPD-Q.
Mostrar más [+] Menos [-]The zebrafish (Danio rerio) embryo-larval contact assay combined with biochemical biomarkers and swimming performance in sewage sludge and hydrochar hazard assessment
2022
Hydrothermal carbonization is considered a powerful technology to convert sewage sludge (SS) into a valuable carbonaceous solid known as hydrochar (HC). Up to now criteria for landfill application of SS and HC are based only on physicochemical properties and levels of pollutant residues. Nevertheless, to ensure their safe environmental applications it is mandatory to develop biosensors which can provide relevant information on their toxic potential for natural ecosystems. Therefore, this study aimed to assess the suitability of a contact assay using zebrafish embryo/larvae combined with sub-lethal end-points to evaluate the hazard associated with SS and related HC exposure. A suite of biomarkers was also applied on larvae, related to detoxification and oxidative stress as the activity of Ethoxyresorufin-O-deethylase, glutathione-S-transferase, and catalase, the content of reactive oxygen species and the behavioral assay using the DanioVision™ chamber. Legacy priority pollutants were also measured either in SS and HC tested samples and in contact waters. The exposure to SS caused higher lethality compared to HC. No significant changes in the activity of oxidative stress markers was observed upon exposure to both matrices. The behavioral test showed a hypoactivity condition in larvae exposed to both SS and HC with the effects of SS stronger than HC. Chemical analysis revealed the presence of trace elements and halogenated compounds in either SS, HC. Heavy metals were also released in contact waters, while volatile hydrocarbons (C6–C10) and halogenated compounds resulted below LOD (<0.05 μ L⁻¹). Our study highlights the suitability of zebrafish embryotoxicity test, coupled with behavioral traits, as screening tool for assessing potential risks, associated with the landfill application of both SS and HC, for aquatic wildlife.
Mostrar más [+] Menos [-]Burden of dust storms on years of life lost in Seoul, South Korea: A distributed lag analysis
2022
Jung, Jiyun | Yi, Ŭn-mi | Myung, Woojae | Kim, Hyekyeong | Kim, Ho | Lee, Hyewon
Although dust storms have been associated with adverse health outcomes, studies on the burden of dust storms on deaths are limited. As global warming has induced significant climate changes in recent decades, which have accelerated desertification worldwide, it is necessary to evaluate the burden of dust storm-induced premature mortality using a critical measure of disease burden, such as the years of life lost (YLL). The YLL attributable to dust storms have not been examined to date. This study investigated the association between Asian dust storms (ADS) and the YLL in Seoul, South Korea, during 2002–2013. We conducted a time-series study using a generalized additive model assuming a Gaussian distribution and applied a distributed lag model with a maximum lag of 5 days to investigate the delayed and cumulative effects of ADS on the YLL. We also conducted stratified analyses using the cause of death (respiratory and cardiovascular diseases) and sociodemographic status (sex, age, education level, occupation, and marital status). During the study period, 108 ADS events occurred, and the average daily YLL was 1511 years due to non-accidental causes. The cumulative ADS exposure over the 6-day lag period was associated with a significant increase of 104.7 (95% CI, 31.0–178.5 years) and 34.4 years (4.0–64.7 years) in the YLL due to non-accidental causes and cardiovascular mortality, respectively. Sociodemographic analyses revealed associations between ADS exposure and the YLL in males, both <65 and ≥ 65 years old, those with middle-level education, and the unemployed, unmarried, and widowed (26.5–83.8 years). This study provides new evidence suggesting that exposure to dust storms significantly increases the YLL. Our findings suggest that dust storms are a critical environmental risk affecting premature mortality. These results could contribute to the establishment of public health policies aimed at managing dust storm exposure and reducing premature deaths.
Mostrar más [+] Menos [-]Detrimental effects of pyriproxyfen on the detoxification and abilities of Belostoma anurum to prey upon Aedes aegypti larvae
2021
Valbon, Wilson R. | Hatano, Eduardo | Oliveira, Nádylla R.X. | Ataíde, Álvaro D. | Corrêa, Maria Júlia M. | Gomes, Sabriny F. | Martins, Gustavo F. | Haddi, Khalid | Alvarenga, Elson S. | Oliveira, Eugênio E.
Despite being effective in controlling mosquito larvae and a few other target organisms, the application of insecticides into aquatic systems may cause unintended alterations to the physiology or behavioral responses of several aquatic non-target organisms, which can ultimately lead to their death. Here, we firstly evaluated whether the susceptibility of the giant water bug, Belostoma anurum (Hemiptera: Belostomatidae), a predator of mosquito larvae, to pyriproxyfen would be similar to that of its potential prey, larvae of Aedes aegypti (Diptera: Culicidae). Secondly, we recorded the nominal concentrations of pyriproxyfen in water and evaluated whether sublethal exposures would lead to physiological or behavioral alterations on the B. anurum nymphs. We characterized the activities of three major families of detoxification enzymes (i.e., cytochrome P450 monooxygenases, glutathione-S-transferase, and general esterases) and further evaluated the abilities of pyriproxyfen sublethally-exposed B. anurum to prey upon A. aegypti larvae at different prey densities. Our findings revealed that nominal pyriproxyfen concentration significantly decreased (approximately 50%) over the first 24 h. Furthermore, when applied at the concentration of 10 μg a.i./L, pyriproxyfen was approximately four times more toxic to A. aegypti larvae (LT₅₀ = 48 h) than to B. anurum nymphs (LT₅₀ = 192 h). Interestingly, the pyriproxyfen sublethally-exposed (2.5 μg a.i./L) B. anurum nymphs exhibited reduced enzyme activities (cytochrome P450 monooxygenases) involved in detoxication processes and preyed significantly less on A. aegypti larvae when compared to unexposed predators. Collectively, our findings demonstrate that mortality-based pyriproxyfen risk assessments are not always protective of aquatic non-target organisms.
Mostrar más [+] Menos [-]Transition in air pollution, disease burden and health cost in China: A comparative study of long-term and short-term exposure
2021
Ambient air pollution is one of the leading environmental risk factors to human health, largely offsetting economic growth. This study evaluated health burden and cost associated with the short-term and long-term exposure of major air pollutants (fine particulate matter [PM₂.₅] and ozone [O₃]) during 2013–2018. We developed a database of gridded daily and annual PM₂.₅ and O₃ exposure in China at 15 km × 15 km resolution. Then, we estimated the age- and cause-specific premature deaths and quantified related health damage with an age-adjusted value of statistical life (VSL) measure. The health cost estimated in this study captured direct cost, indirect cost and intangible cost of the premature death attributable to ambient PM₂.₅ and O₃. We found that the national premature deaths attributable to long-term and short-term exposure to PM₂.₅ decreased by 15% and 59%, whereas the national premature deaths attributable to long-term and short-term exposure to O₃ increased by 36% and 94%. Despite a 15% reduction of attributable deaths, the health cost attributable to long-term exposure to PM₂.₅ did not change significantly as a result of GDP growth and population aging. On the other hand, the long-term O₃ related health cost in 2018 doubled that in 2013. Our study suggests that while premature deaths fell as a result of China’s clean air actions, the health costs of air pollution remained high. The growing trends of O₃ highlighted the needs for strategies to reduce both PM₂.₅ and O₃ emissions, for the sake of public health and social well-being in China.
Mostrar más [+] Menos [-]Using a land use regression model with machine learning to estimate ground level PM2.5
2021
Wong, Pei-Yi | Lee, Hsiao-Yun | Chen, Yu-Cheng | Zeng, Yu-Ting | Chern, Yinq-Rong | Chen, Nai-Tzu | Candice Lung, Shih-Chun | Su, Huey-Jen | Wu, Chih-Da
Ambient fine particulate matter (PM₂.₅) has been ranked as the sixth leading risk factor globally for death and disability. Modelling methods based on having access to a limited number of monitor stations are required for capturing PM₂.₅ spatial and temporal continuous variations with a sufficient resolution. This study utilized a land use regression (LUR) model with machine learning to assess the spatial-temporal variability of PM₂.₅. Daily average PM₂.₅ data was collected from 73 fixed air quality monitoring stations that belonged to the Taiwan EPA on the main island of Taiwan. Nearly 280,000 observations from 2006 to 2016 were used for the analysis. Several datasets were collected to determine spatial predictor variables, including the EPA environmental resources dataset, a meteorological dataset, a land-use inventory, a landmark dataset, a digital road network map, a digital terrain model, MODIS Normalized Difference Vegetation Index (NDVI) database, and a power plant distribution dataset. First, conventional LUR and Hybrid Kriging-LUR were utilized to identify the important predictor variables. Then, deep neural network, random forest, and XGBoost algorithms were used to fit the prediction model based on the variables selected by the LUR models. Data splitting, 10-fold cross validation, external data verification, and seasonal-based and county-based validation methods were used to verify the robustness of the developed models. The results demonstrated that the proposed conventional LUR and Hybrid Kriging-LUR models captured 58% and 89% of PM₂.₅ variations, respectively. When XGBoost algorithm was incorporated, the explanatory power of the models increased to 73% and 94%, respectively. The Hybrid Kriging-LUR with XGBoost algorithm outperformed the other integrated methods. This study demonstrates the value of combining Hybrid Kriging-LUR model and an XGBoost algorithm for estimating the spatial-temporal variability of PM₂.₅ exposures.
Mostrar más [+] Menos [-]Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect, Chironomus dilutus
2020
Wei, Fenghua | Wang, Dali | Li, Huizhen | Xia, Pu | Ran, Yong | Yau, Ching
Neonicotinoid insecticides have posed a great threat to non-target organisms, yet the mechanisms underlying their toxicity are not well characterized. Major modes of action (MoAs) of imidacloprid were analyzed in an aquatic insect Chironomus dilutus. Lethal and sublethal outcomes were assessed in the midges after 96-h exposure to imidacloprid. Global transcriptomic profiles were determined using de novo RNA-sequencing to more holistically identify toxicity pathways. Transcriptional 10% biological potency values derived from ranked KEGG pathways and GO terms were 0.02 (0.01–0.08) (mean (95% confidence interval) and 0.05 (0.04–0.06) μg L⁻¹, respectively, which were more sensitive than those from phenotypic traits (10% lethal concentration: 0.44 (0.23–0.79) μg L⁻¹; 10% burrowing behavior concentration: 0.30 (0.22–0.43) μg L⁻¹). Major MoAs of imidacloprid in aquatic species were identified as follows: the activation of nicotinic acetylcholine receptors (nAChRs) induced by imidacloprid impaired organisms’ nerve system through calcium ion homeostasis imbalance and mitochondrial dysfunction, which posed oxidative stress and DNA damage and eventually caused death of organisms. The current investigation highlighted that imidacloprid affected C. dilutus at environmentally relevant concentrations, and elucidated toxicity pathways derived from gene alteration to individual outcomes, calling for more attention to toxicity of neonicotinoids to aquatic organisms.
Mostrar más [+] Menos [-]Is obesity the missing link between COVID-19 severity and air pollution?
2020
Lubrano, Carla | Risi, Renata | Masi, Davide | Gnessi, Lucio | Colao, Annamaria
In the previous publication “Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?” Conticini et al. hypothesized that the surplus of lethality of the novel SARS-CoV-2 in Northern Italy may be at least in part explained by the evidence of highest pollution reported in this area, as both severe COVID-19 and smog exposure are correlated to an innate immune system hyper-activation with subsequent lung inflammation and injury. Since this hypothesis alone does not fully explain why specific subgroups of patients are at major risk, we hypothesized that obesity may be one of the links between COVID-19 severity and high level of air pollution. First, obesity is a predisposing factor for SARS-Cov-2 infection and worse COVID-19 outcomes, and unequivocal evidence demonstrated that fat mass excess is independently associated with several pulmonary diseases and lung inflammation. Moreover, it has been shown that obesity may intensify the detrimental effects of air pollution on the lungs, and this is not surprising if we consider that these conditions share an excessive activation of the immune system and a lung inflammatory infiltrate. Finally, fat mass excess has also been speculated to be itself a consequence of air pollutants exposure, which has been proved to induce metabolic disruption and weight gain in murine models. In conclusion, although many variables must be taken into account in the analysis of the pandemic, our observations suggest that obesity may act as effect modifier of smog-induced lung-injury, and the concomitant presence of these two factors could better explain the higher virulence, faster spread and greater mortality of SARS-CoV-2 in Northern Italy compared to the rest of the country.
Mostrar más [+] Menos [-]Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio
2020
Heavy metals (HMs) in an aquatic environment mainly affects fish, and thus, fish are convenient pollution bio-indicators. In this study, the toxic effects of HM mixture (chromium (Cr), cadmium (Cd), copper (Cu)) in 0 mg/L to 3.2 mg/L concentration range was investigated in Cyprinus carpio (28 days). HM accumulation, histopathology, oxidative stress, and gut microbial changes were evaluated. HMs accumulated in the order of Cr > Cu > Cd, primarily in the kidneys and finally scales. Reactive oxygen species generation increased in all exposure groups up to day 14, with maximum generation at 3.2 mg/L mixture, which later decreased on day 28 in all. Malondialdehydeand and superoxide dismutase levels increased from day 7 to 28 with increased HM concentrations, while total protein showed an inverse trend. Gill histopathology showed major changes such as uplifted and disintegrated primary lamella, and secondary lamella shortening. The kidneys were characterized by glomerular necrosis, Bowman’s capsule expansion, and tubular space dilatation. Proteobacteria and Firmicutes abundance increased up to 59.4% and 99.16% in 0.8 mg/L and 3.2 mg/L treatment groups, respectively. This study provided a better understanding on the physiology and gut microbiota alteration in C. carpio under multiple HM stress.
Mostrar más [+] Menos [-]Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton
2019
Saavedra Gorriateguy, Juan | Stoll, Serge | Slaveykova, Vera I.
Concerns about possible environmental implications of nano- and micro-plastics are continuously raising. Hence, comprehensive understanding of their behaviour, bioaccumulation and toxicity potential is required. Nevertheless, systematic studies on their fate and possible effects in freshwaters, as well as the influence of particle-specific and environmental factors on their behaviour and impacts are still missing. The aims of the present study are thus two-fold: (i) to examine the role of the surface charge on nanoplastic stability and acute effects to freshwater zooplankton; (ii) to decipher the influence of the refractory natural organic matter (NOM) on the nanoplastic fate and effects. Amidine and carboxyl-stabilized polystyrene (PS) spheres of 200 nm diameter characterized by opposite primary surface charges and neutral buoyancy were selected as model nanoplastics. The results demonstrated that the surface functionalization of the polystyrene nanoplastics controls their aggregation behaviour. Alginate or Suwannee River humic acid (SRHA) modified significantly the surface charge of positively-charged amidine PS nanoplastic and the aggregation state, while had no significant influence on the negatively-charged carboxyl PS nanoplastic. Both amidine and carboxyl PS nanoplastics were ingested by the zooplankton and concentrated mainly in the gut of water flea Daphnia magna and larvae Thamnocephalus platyurus, and the stomach of rotifer Brachionus calyciflorus. Amidine PS nanoplastic was more toxic than carboxyl one. The toxicity decreased in the order D. magna (48 h -immobilization) > B. calyciflorus (24 h - lethality) > T. platyurus (24 h - lethality). Alginate or SRHA reduced significantly the toxicity of both amidine and carboxyl PS nanoplastics to the studied zooplankton representatives. The implications of this laboratory study findings to natural environment were discussed.
Mostrar más [+] Menos [-]