Refinar búsqueda
Resultados 1-10 de 135
Efficacy of Mn-doped ZnO towards Removal of Congo Red Dye under UV Exposure: Isotherm, Kinetics, Thermodynamics and Optimization Study
2023
Roy, Tapas | Mondal, Naba Kumar | Mitra, Partha
Discharge of synthetic dyes from industries without treatment leads to major environmental problems. Present research highlighted the Mn-doped ZnO along with UV-induced photo degradation of Congo red (CR) dye through batch study. The synthesized Mn-doped ZnO (MDZO) was characterized by Transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The results revealed that MDZO along with UV exposure degraded the CR dye up to 99.3% at concentration 4 mg/L, pH (7), adsorbent dose (0.6 g/L) and contact time (30 min). The degradation data nicely fitted with pseudo-secondary kinetics and the thermodynamic study suggest the said reaction is exothermic in nature. A statistical method, central composite design (CCD) was used to screen out the optimized condition of dye degradation. The interactions of main factors and optimal conditions were also evaluated by 3D surface plots. The statistical output clearly demonstrates that the dye degradation data is nicely fitted with very high goodness of fit and F value (86.19). Present research clearly suggested that Mn-doped ZnO along with UV could be an effective treatment towards degradation of Congo red dye.
Mostrar más [+] Menos [-]Application of Ti3C2(OH)2 MXene Nanosheets as a Potential Adsorbent and Photocatalyst for Degradation of Organic Dye in Aqueous Media
2023
Hasani Khaneghahi, Batool | Dehghan Abkenar, Shiva | Gilnejad, Javad | Ganjali, Mohammad Reza | Hosseini, Morteza
In this work, single layered Ti3C2(OH)2 MXene nanosheets have been successfully prepared through a facile approach by etching Ti3AlC2 with alkaline solution treatment (KOH with minimum amounts of water). The structure and morphology of the produced nanosheets were evaluated through X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis and the chemical composition was determined using an energy dispersion X-ray (EDX) spectrometer. Methylene Blue (MB) as a target pollutant adsorption and photocatalytic degradation tests were subsequently performed to assess the functionalities of hydroxyl-terminated MXene. MB removal using Ti3C2(OH)2 MXene in the dark in 20 minutes achieved an absorption-desorption balance of 51.2%, and then MB was degraded within 80 minutes under UV light irradiation with great efficiency. Our results presented that the powder of as produced exhibited good photocatalytic activity for three cycles photodegradation. The first-order rate constant (k) was calculated to be 0.0372 1/min. About 97% degradation of Methylene Blue dye in the solution was confirmed within 80 min of exposure to ultraviolet light.
Mostrar más [+] Menos [-]Analytical Methods for Extraction, Determination and Degradation of Diazinon in Soil Samples
2023
Dehghan Abkenar, Shiva | khakipour, Nazanin | Ganjali, Mohammad Reza
Diazinon is an organophosphorus insecticide that was widely used in agriculture to control pests on crops. It acts as an acetylcholinesterase inhibitor, which means that it interferes with the normal functioning of the nervous system of insects, leading to their death. Diazinon can also have an impact on human health and the environment, as it can contaminate water and soil and pose a risk to non-target species, including humans and animals. This review paper shows the progress made in the last years in analytical methods applied for the purpose of extraction, detection and degradation of Diazinon as an important environmental pollutant. A variety of sampling and analytical methods have been developed to measure diazinon and its metabolites in different media. The most popular methods for the identification and analysis of Diazinon are liquid and gas chromatography, liquid-liquid extraction, and solid-phase extraction (SPE). The focus of this review is on the identification, measurement, and elimination of diazinon as a major soil pollutant. It begins with a discussion of analytical techniques, followed by an examination of methods for removing diazinon from soil.
Mostrar más [+] Menos [-]O-Anisidine Degradation by Fenton’s Reagent and Reaction Time Estimation
2020
Chaturvedi, N. K. | Katoch, S. S.
O-Anisidines (OAs) are extensively used as an intermediate for chemical reactions to produce various triphenylmethane and azo dyes, and also in manufacturing numerous pigments. They are found to be highly toxic and have carcinogenic properties, so it is imperative to treat OA solutions before disposal. In this study a promising approach to degrade OA solutions has been carried out using Fenton’s reagent. Oxidation trials were conducted for 24 hours and various parameters – OA removal, pH, effect of H2O2 and Fe2+, and COD removal – were analysed to understand the oxidative degradation of OA. For varying initial OA concentrations, the OA and COD removal efficiencies of 72 to 85% and 62 to 74%, respectively, were obtained at pH = 3, and at different optimum H2O2 and Fe2+ doses. Lower initial concentrations of OA showed better removal efficiencies. The reaction time was estimated to 360 minutes after which there was negligible degradation occurs.
Mostrar más [+] Menos [-]Electrochemical Advanced Oxidation of Acid Red Solution Using Carbon Felt or Glassy Carbon Cathode and Pt Anode
2023
Wakrim, Asmaa | Zaroual, Zaina | El Ghachtouli, Sanae | Jamal Eddine, Jamal | Azzi, Mohammed
In order to find an effective decolorization method for dye wastewaters, the present work aims at studying the treatment efficiency of an azo dye Acid Red 14 (AR14) by Electro-Fenton process using an undivided electrochemical cell containing different electrode materials. The optimal removal efficiency was obtained using carbon felt or glassy carbon (cathode) and platinum (anode) electrodes. The method is based on the reaction of electrochemically produced hydroxyl radicals leading to oxidative degradation of the AR14. To find the best conditions for treatment of AR14 dye, the effects of Fe2+ concentration, current density, the effect of pH initial, and the nature of support electrolyte were studied. The results showed 94 % removal efficiency in 30 minutes with 120 mA/cm2 of electrolysis current, 0.2 mM of Fe2+, and pH = 3. However, the decolorization efficiency measurements confirmed that the Electro-Fenton process with the platinum anode and the carbon felt cathode was more efficient.
Mostrar más [+] Menos [-]Response surface method Optimization of the Dyes Degradation using Zero-Valent Iron based Bimetallic Nanoparticle on the Bentonite Clay Surface
2020
Sabouri, M. R. | Sohrabi, M. R. | Zeraatkar Moghaddam, A.
Immobilizing of zero-valent iron in mono- and bi-metallic systems on the bentonite clay surface as new nanocatalyst were synthesized and used to degrade model acidic dyes from aqueous media. The Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were used to characterize the synthesized nanocomposites, which demonstrated successful loading of nanoscale Fe-Cu bi-metallic onto bentonite support. Different variables controlling the congo red, methyl orange and methyl red dyes degradation using zero-valent iron based bimetallic nanoparticle on the bentonite clay surface as new nanocatalyst were concurrently optimized through an experimental design. Basic evaluations proved the nanocatalyst quantity, medium pH, initial dye concentration, and contact time as the most important variables influencing the degradation phenomenon and hence a response surface methodology based on the central composite design was conducted to determine the relations between the variables and the degradation efficiencies. The statistical factors (e.g. R2 and F-value) of the derived models were considered. Using response surface plots obtained through the models, the effects of the variables on the degradation efficiencies for each dye were assessed. Also, the Nelder-Mead non-linear optimizations were performed and the optimal degradation efficiencies at a 95% confidence level were determined which were found to comply with the respective experimental response values.
Mostrar más [+] Menos [-]The mobility, partitioning and degradation of atrazine and simazine in the salt marsh environment.
1995
Meakins N.C. | Bubb J.M. | Lester J.N.
Effect of salinity on the fate of pesticides in irrigated systems: a first overview
2023
Khouni, Mariem | Hammecker, Claude | Grünberger, Olivier | Chaabane, Hanène | Institut National Agronomique de Tunisie (INAT) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | PROJET PRIMA ALTOS
International audience | This review investigates the impact of salinity on the fate of the active compounds of pesticides in a cultivated environment. Due to the over-exploitation of water resources and intensification of agriculture, salinity outbreaks are being observed more often in cultivated fields under pesticide treatments. Nevertheless, there is a poor understanding of the incidence of varying water salt loads on the behavior of pesticides’ active ingredients in soil and water bodies. The present review established that water salinity can affect the diffusion of pesticides’ active ingredients through numerous processes. Firstly, by increasing the vapor pressure and decreasing the solubility of the compounds, which is known as the salting-out effect, salinity can change the colligative properties of water towards molecules and the modification of exchange capacity and sorption onto the chemicals. It has also been established that the osmotic stress induced by salinity could inhibit the biodegradation process by reducing the activity of sensitive microorganisms. Moreover, soil properties like dissolved organic matter, organic carbon,clay content, and soil texture control the fate and availability of chemicals in different processes of persistence in water and soil matrix. In the same line, salinity promotes the formation of different complexes, such as between humic acid and the studied active compounds. Furthermore, salinity can modify the water flux due to soil clogging because of the coagulation and dispersion of clay particle cycles, especially when the change in salinity ranges is severe.
Mostrar más [+] Menos [-]Evaluation of temperature corrections for pesticide half-lives in tropical and temperate soils
2022
Campan, Pauline | Samouëlian, Anatja | Voltz, Marc | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | This work was funded by the Guadeloupe region and the European Regional Development Fund (FEDER) (grant 410–00160),and the senior author was awarded a doctoral scholarship by the Institut Agro Montpellier.
International audience | Temperature is a key factor that influences pesticide degradation. Extrapolating degradation half-lives (DT50) measured at a given temperature to different temperatures remains challenging, especially for tropical conditions with high temperatures. In this study, the use of the standard Arrhenius equation for correcting temperature effects on pesticide degradation in soils was evaluated and its performance was compared with that of alternative Arrhenius-based equations. To do so, a database of 509 DT50 values measured between 5 and 35 °C for 32 pesticides on tropical and temperate soils was compiled for the first time through an extensive literature search. The temperature correction models were fitted to the database using linear mixed regression approaches that included soil type and compound effects. No difference in the temperature dependence of DT50 between tropical and temperate soils was detected, regardless of the model. A comparison of the prediction performances of the models showed that constant activation energy (Ea) cannot be considered valid for the whole range of temperatures. The classical Arrhenius equation with an Ea of 65.4 kJ.mol−1, as recommended by the European Food Safety Authority (EFSA), was shown to be valid for correcting the DT50 only for temperatures ranging from 5 to 20 °C. However, for temperatures greater than 20 °C, which are common in tropical environments, the median Ea was significantly lower at 10.3 kJ.mol−1. These findings suggest the need to adapt the standard temperature correction of the European pesticide risk assessment temperature procedure when it is applied in tropical settings
Mostrar más [+] Menos [-]Optimization of Fenton Oxidation Process for Degradation of 1-Butyl-3 Methyl Imidazolium Chloride (BMIMCL) Using Response Surface Methodology
2022
S. R. Nadaf | P. B. Kalburgi
The degradation of 1-butyl 3-methyl imidazolium chloride (BMIMCl) ionic liquid (IL) by Fenton oxidation has been studied. The optimization of operating parameters for maximum degradation of BMIMCl has been carried out using the Central Composite Design (CCD) of Response Surface Methodology (RSM). The three independent input parameters selected were the dosage of Hydrogen Peroxide (H2O2), the dosage of iron (Fe2+), and the pH of the output or response selected was Total Organic Carbon (TOC) removal efficiency. Experiments were carried out according to the experimental design provided by CCD. For TOC Degradation, the model’s R2 and R2adj correlation coefficients between experimental and model-predicted values were 0.9769 and 0.9561, respectively. This indicates a satisfactory correlation of experimental results with model-predicted values. The optimum values of operating parameters for maximum degradation were found to be H2O2=307 mM (X1), Fe2+=1.1 mM (X2), and (pH)=3.3 (X3), for a reaction time of 120 min. For these operating parameters, the experimental result for TOC removal efficiency was found to be 72.89% as compared to the model-predicted value of 73.67%. These results indicate that the values were closely correlated with each other and thus the model was validated satisfactorily. Overall, the results indicate that the BMIMCl ionic liquid can be effectively degraded by the Fenton oxidation process.
Mostrar más [+] Menos [-]