Refinar búsqueda
Resultados 1-10 de 29
Exposures to chemical contaminants: What can we learn from reproduction and development endpoints in the amphibian toxicology literature?
2019
Slaby, Sylvain | Marin, Matthieu | Marchand, Guillaume | Lemière, Sébastien | Institut National de la Recherche Agronomique (INRA) | Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF) ; Université de Lille-Centre National de la Recherche Scientifique (CNRS) | Université de Lille | French ministry of higher education and research; Region des Hauts-de-France
International audience | Environmental contamination is one of the major factors or cofactors affecting amphibian populations. Since 2000, the number of studies conducted in laboratory conditions to understand impacts of chemical exposures increased. They aimed to characterize biological effects on amphibians. This review proposes an overview of biological responses reported after exposures to metals, phytopharmaceuticals or emerging organic contaminants and focuses on endpoints relating to reproduction and development. Due to amphibian peculiar features, these periods of their life cycle are especially critical to pollutant exposures. Despite the large range of tested compounds, the same model species are often used as biological models and morphological alterations are the most studied observations. From the results, the laboratory-to-field extrapolation remained uneasy and exposure designs have to be more elaborated to be closer to environmental conditions. Few studies proposed such experimental approaches. Lastly, gametes, embryos and larvae constitute key stages of amphibian life cycle that can be harmed by exposures to freshwater pollutants. Specific efforts have to be intensified on the earliest stages and notably germ cells.
Mostrar más [+] Menos [-]Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, Andre | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, Luc | Departamento de Biologia ; Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University (UNESP) | Abeilles et Environnement (AE) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Biostatistique et Processus Spatiaux (BioSP) ; Institut National de la Recherche Agronomique (INRA) | Universidade Federal de Lavras = Federal University of Lavras (UFLA) | Universidade Federal de São Carlos [São Carlos] (UFSCar) | Laboratoire de l'Environnement et de l'Alimentation de la Vendée ; Institut National de la Recherche Agronomique (INRA) | Sao Paulo Research Foundation 2013/21634-8 2012/50197-2
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/µL, 0.001 ng/µL and 1.44 ng/µL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages ofthe honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Mostrar más [+] Menos [-]Sublethal effects of chlorantraniliprole on Paederus fuscipes (Staphylinidae: Coleoptera), a general predator in paddle field
2021
Mūsá K̲h̲ān̲, Muḥammad | Hafeez, Muhammad | Elgizawy, Karam | Wang, Hanyu | Zhao, Jing | Cai, Wanlun | Ma, Weihua | Hua, Hongxia
Paederus fuscipes is a general predator in rice fields and a non-target organism of chlorantraniliprole, an effective insecticide for insect-pest control in paddy fields. Pesticide hazards to non-target organisms have been a growing global problem for decades. This study was designed to evaluate the toxicity of chlorantraniliprole at lethal and sublethal levels against P. fuscipes larvae and adults. The LC₅₀ of chlorantraniliprole against P. fuscipes adults and larvae were respectively 535.49 and 111.24 mg a.i. L⁻¹, which is higher than the dosage recommended for use in the field (59.38 mg a.i. L⁻¹), but the LC₃₀ and LC₁₀ for larvae are lower than the recommended field dose which showed that the sublethal effects on immature stages are inevitable. Treatment at larval stage with LC₃₀ of chlorantraniliprole significantly elongated the pre-imaginal developmental and pre-oviposition periods. Also, adults exposed directly to chlorantraniliprole oviposited significantly less number of eggs in both LC₁₀ and LC₃₀ treatments. Furthermore, the larval predation efficiency and female bodyweight were also reduced due to exposure to sublethal doses. Meanwhile, the activities of antioxidant (SOD, POD and CAT) and detoxification (P450, AChE and GST) enzymes were also significantly affected by the exposure to these sublethal concentrations. These findings showed that sublethal doses of chlorantraniliprole adversely influenced P. fuscipes development and physiology, and therefore its use as part of integrative pest management should be given further considerations.
Mostrar más [+] Menos [-]Combined influences of transgenerational effects, temperature and insecticide on the moth Spodoptera littoralis
2021
Massot, Manuel | Bagni, Thibaut | Maria, Annick | Couzi, Philippe | Drozdz, Thomas | Malbert-Colas, Aude | Maïbèche, Martine | Siaussat, David
Climate warming is expected to impact the response of species to insecticides. Recent studies show that this interaction between insecticides and temperature can depend on other factors. Here, we tested for the influence of transgenerational effects on the Insecticide × Temperature interaction in the crop pest moth Spodoptera littoralis. Specifically, we analysed reaction norms among experimental clutches based on a split-plot design crossing the factors temperature, insecticide and clutch. The study was performed on 2280 larvae reared at four temperatures (23, 25, 27 and 29 °C), and their response to the insecticide deltamethrin (three concentrations and a control group) was tested. Temperature had a global influence with effects on larval survival, duration of development, pupal body mass, and significant reaction norms of the clutches for temperature variations of only 2 °C. In addition to the expected effect of deltamethrin on mortality, the insecticide slightly delayed the development of S. littoralis, and the effects on mortality and development differed among the clutches. Projection models integrating all the observed responses illustrated the additive effects of deltamethrin and temperature on the population multiplication rate. Variation in the response of the clutches showed that transgenerational effects influenced the impact of insecticide and temperature. Although no evidence indicated that the Insecticide × Temperature interaction depended on transgenerational effects, the studies on the dependence of the Insecticide × Temperature interaction on other factors continue to be crucial to confidently predict the combined effects of insecticides and climate warming.
Mostrar más [+] Menos [-]Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only
2019
Jacques, Mauricio Tavares | Bornhorst, Julia | Soares, Marcell Valandro | Schwerdtle, Tanja | Garcia, Solange | Ávila, Daiana Silva
Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bioaccumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels.
Mostrar más [+] Menos [-]Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, André | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, L. P. (Luc P.)
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/μL, 0.001 ng/μL and 1.44 ng/μL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages of the honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Mostrar más [+] Menos [-]Effects of naphthenic acid exposure on development and liver metabolic processes in anuran tadpoles
2013
Melvin, Steven D. | Lanctôt, Chantal M. | Craig, Paul M. | Moon, T. W. (Thomas W.) | Peru, Kerry M. | Headley, John V. | Trudeau, Vance L.
Naphthenic acids (NA) are used in a variety of commercial and industrial applications, and are primary toxic components of oil sands wastewater. We investigated developmental and metabolic responses of tadpoles exposed to sub-lethal concentrations of a commercial NA blend throughout development. We exposed Lithobates pipiens tadpoles to 1 and 2 mg/L NA for 75 days and monitored growth and development, condition factor, gonad and liver sizes, and levels of liver glucose, glycogen, lipids and cholesterol following exposure. NA decreased growth and development, significantly reduced glycogen stores and increased triglycerides, indicating disruption to processes associated with energy metabolism and hepatic glycolysis. Effects on liver function may explain reduced growth and delayed development observed in this and previous studies. Our data highlight the need for greater understanding of the mechanisms leading to hepatotoxicity in NA-exposed organisms, and indicate that strict guidelines may be needed for the release of NA into aquatic environments.
Mostrar más [+] Menos [-]Developmental toxicity in zebrafish (Danio rerio) exposed to uranium: A comparison with lead, cadmium, and iron
2021
Shankar, Prarthana | Dashner-Titus, Erica J. | Truong, Lisa | Hayward, Kimberly | Hudson, Laurie G. | Tanguay, Robyn L.
Populations of plants and animals, including humans, living in close proximity to abandoned uranium mine sites are vulnerable to uranium exposure through drainage into nearby waterways, soil accumulation, and blowing dust from surface soils. Little is known about how the environmental impact of uranium exposure alters the health of human populations in proximity to mine sites, so we used developmental zebrafish (Danio rerio) to investigate uranium toxicity. Fish are a sensitive target for modeling uranium toxicity, and previous studies report altered reproductive capacity, enhanced DNA damage, and gene expression changes in fish exposed to uranium. In our study, dechorionated zebrafish embryos were exposed to a concentration range of uranyl acetate (UA) from 0 to 3000 μg/L for body burden measurements and developmental toxicity assessments. Uranium was taken up in a concentration-dependent manner by 48 and 120 h post fertilization (hpf)-zebrafish without evidence of bioaccumulation. Exposure to UA was not associated with teratogenic outcomes or 24 hpf behavioral effects, but larvae at 120 hpf exhibited a significant hypoactive photomotor response associated with exposure to 3 μg/L UA which suggested potential neurotoxicity. To our knowledge, this is the first time that uranium has been associated with behavioral effects in an aquatic organism. These results were compared to potential metal co-contaminants using the same exposure paradigm. Similar to uranium exposure, lead, cadmium, and iron significantly altered neurobehavioral outcomes in 120-hpf zebrafish without inducing significant teratogenicity. Our study informs concerns about the potential impacts of developmental exposure to uranium on childhood neurobehavioral outcomes. This work also sets the stage for future, environmentally relevant metal mixture studies. Summary Uranium exposure to developing zebrafish causes hypoactive larval swimming behavior similar to the effect of other commonly occurring metals in uranium mine sites. This is the first time that uranium exposure has been associated with altered neurobehavioral effects in any aquatic organism.
Mostrar más [+] Menos [-]Developmental toxicity of plastic leachates on the sea urchin Paracentrotus lividus
2021
Rendell-Bhatti, Flora | Paganos, Periklis | Pouch, Anna | Mitchell, Christopher | D’Aniello, Salvatore | Godley, Brendan J. | Pazdro, Ksenia | Arnone, Maria Ina | Jimenez-Guri, Eva
Microplastic pollution has become ubiquitous, affecting a wide variety of biota. Although microplastics are known to alter the development of a range of marine invertebrates, no studies provide a detailed morphological characterisation of the developmental defects. Likewise, the developmental toxicity of chemicals leached from plastic particles is understudied. The consequences of these developmental effects are likely underestimated, and the effects on ecosystems are unknown. Using the sea urchin Paracentrotus lividus as a model, we studied the effects of leachates of three forms of plastic pellet: new industrial pre-production plastic nurdles, beached pre-production nurdles, and floating filters, known as biobeads, also retrieved from the environment. Our chemical analyses show that leachates from beached pellets (biobead and nurdle pellets) and highly plasticised industrial pellets (PVC) contain polycyclic aromatic hydrocarbons and polychlorinated biphenyls, which are known to be detrimental to development and other life stages of animals. We also demonstrate that these microplastic leachates elicit severe, consistent and treatment-specific developmental abnormalities in P. lividus at embryonic and larval stages. Those embryos exposed to virgin polyethylene leachates with no additives nor environmental contaminants developed normally, suggesting that the abnormalities observed are the result of exposure to either environmentally adsorbed contaminants or pre-existing industrial additives within the polymer matrix. In the light of the chemical contents of the leachates and other characteristics of the plastic particles used, we discuss the phenotypes observed during our study, which include abnormal gastrulation, impaired skeletogenesis, abnormal neurogenesis, redistribution of pigmented cells and embryo radialisation.
Mostrar más [+] Menos [-]Elevated CO2 concentration affects survival, but not development, reproduction, or predation of the predator Hylyphantes graminicola (Araneae: Linyphiidae)
2021
Li, Wei | Zhao, Yao | Li, Yingying | Zhang, Shichang | Yun, Yueli | Cui, Jinjie | Peng, Yu
Elevated CO₂ concentrations can change the multi-level nutritional relationship of the ecosystem through the cascading effect of the food chain. To date, few studies have investigated the effects of elevated CO₂ concentration on the Araneae species through the tritrophic system. Hylyphantes graminicola (Araneae: Linyphiidae) is distributed widely in Asia and is a dominant predator in cotton fields. This study investigated chemical components in the food chain of cotton (Gossypium hirsutum)—cotton aphid (Aphis gossypii)—predator (H. graminicola) and compared the development, reproduction, and predation of H. graminicola under ambient (400 ppm) and elevated concentration of CO₂ (800 ppm). The results showed that the elevated CO₂ concentration increased the chemicals of cotton and cotton aphid, but it did not affect the nutrients, development, reproduction, and predation of the spider. However, the survival rate of the spider was significantly decreased in elevated CO₂. The results will further our understanding of the role of natural enemies in an environment with elevated CO₂ concentration.
Mostrar más [+] Menos [-]