Refinar búsqueda
Resultados 1-10 de 146
Leaching of PBDEs from microplastics under simulated gut conditions: Chemical diffusion and bioaccumulation Texto completo
2022
Sun, Bingbing | Zeng, E. Y. (Eddy Y.)
Considerable efforts on exposure assessment of microplastics (MPs) as an agent in transport of toxic contaminants have been performed in organisms. However, chemical diffusion of inherent hydrophobic organic contaminants from MPs under simulated gut conditions is poorly examined. The present study examined the transfer kinetics of polybrominated diphenyl ethers (PBDEs) from polystyrene (PS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP) MPs under gut surfactants (sodium taurocholate) at two relevant body temperatures of marine organisms, and evaluated the importance of MP ingestion in bioaccumulation of PBDEs in lugworm by a biodynamic model. Diffusion coefficients of PBDEs range from 5.82 × 10⁻²³ to 7.96 × 10⁻²⁰ m² s⁻¹ in PS, 5.49 × 10⁻²³ to 3.45 × 10⁻²⁰ m² s⁻¹ in ABS, and 5.58 × 10⁻²¹ to 5.79 × 10⁻¹⁷ m² s⁻¹ in PP, with apparent activation energies in the range of 33–148 kJ mol⁻¹. The biota–plastic accumulation factors of PBDEs leached from these plastics range from 1.44 × 10⁻⁸ to 7.15 × 10⁻⁵. Although ingestion of MPs with the common size (>0.5 mm) showed the negligible contribution to bioaccumulation of PBDEs in lugworm, their contribution in PBDEs transfer can be increased with gradual breakdown of MPs.
Mostrar más [+] Menos [-]Microplastics-perturbed gut microbiota triggered the testicular disorder in male mice: Via fecal microbiota transplantation Texto completo
2022
Wen, Siyue | Zhao, Yu | Liu, Shanji | Yuan, Hongbin | You, Tao | Xu, Hengyi
Microplastics (MPs), an emerging environmental pollutant, have been clarified to induce testicular disorder in mammals. And the current studies have delineated a correlation between gut microbiota and male reproduction. However, it's still unclear whether gut microbiota gets involved in MPs-induced reproductive toxicity. In this work, we constructed a mouse model drinking 5 μm polystyrene-MPs (PS-MPs) at the concentrations of 100 μg/L and 1000 μg/L for 90 days. Evident histological damage, spermatogenetic disorder and hormones synthesis inhibition were observed in PS-MPs exposed mice. With fecal microbiota transplantation (FMT) trial, the recipient mice exhibited gut microbial alteration, and the elevated abundance of Bacteroides and Prevotellaceae_UCG-001 were positively correlated with testicular disorder according to spearman correlation analysis. Mechanistically, increased proportion of pro-inflammatory bacteria may drive translocation of T helper 17 (Th17) cells, resulting in overproduced interleukin (IL)-17 A and downstream inflammatory response in both the mice exposed to PS-MPs and corresponding recipient mice. In summary, our findings revealed the critical role of gut microbiota in PS-MPs-induced reproductive toxicity, and tried to elucidate the underlying mechanism of gut microbial dysregulation-mediated IL-17 A signaling pathway. Furthermore, this study also provides the research basis for gut microbiota-targeted treatment of male infertility in the future.
Mostrar más [+] Menos [-]Fate of multiple Bt proteins from stacked Bt maize in the predatory lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) Texto completo
2021
Meissle, Michael | Kloos, Stefanie | Romeis, Jörg
Insecticidal Cry proteins from Bacillus thuringiensis (Bt) can be transferred from genetically engineered crops to herbivores to natural enemies. For the lady beetle Harmonia axyridis, we investigated potential uptake of Cry proteins from the gut to the body and intergenerational transfer. Third and fourth instar H. axyridis fed with pollen or spider mites from SmartStax maize contained substantial amounts of Cry1A.105, Cry1F, Cry2Ab2, Cry3Bb1, and Cry34Ab1. Cry protein concentrations in lady beetle larvae were typically one order of magnitude lower than in the food. When H. axyridis larvae were fed Bt maize pollen, median amounts of Cry protein in the non-feeding pupae were below the limit of detection except for small amounts of Cry34Ab1. No Cry protein was detected in pupae when spider mites were used as food. Cry protein concentrations decreased quickly after H. axyridis larvae were transferred from pollen or spider mites to Bt-free food. Aphids contained very low or no detectable Cry protein, and no Cry protein was found in H. axyridis larvae fed with aphids, and in pupae. When H. axyridis adults were fed with Bt maize pollen (mixed with Ephestia kuehniella eggs), the median concentrations of Cry proteins in lady beetle eggs were below the limit of detection except for Cry34Ab1 in eggs laid later in adult life. No Bt protein was detected in eggs laid by H. axyridis females fed with aphids from Bt maize. Our results confirm previous observations that Cry proteins are degraded and excreted quickly in the arthropod food web without evidence for bioaccumulation. Despite the fact that small amounts of Cry proteins were detected in some samples of the non-feeding pupal stage of H. axyridis as well as in eggs, we conclude that this route of exposure is unlikely to be significant for predators or parasitoids in a Bt maize field.
Mostrar más [+] Menos [-]Nontarget analysis reveals gut microbiome-dependent differences in the fecal PCB metabolite profiles of germ-free and conventional mice Texto completo
2021
Li, Xueshu | Liu, Yanna | Martin, Jonathan W. | Cui, Julia Yue | Lehmler, Hans-Joachim
Mammalian polychlorinated biphenyl (PCB) metabolism has not been systematically explored with nontarget high-resolution mass spectrometry (Nt-HRMS). Here we investigated the importance of the gut microbiome in PCB biotransformation by Nt-HRMS analysis of feces from conventional (CV) and germ-free (GF) adult female mice exposed to a single oral dose of an environmental PCB mixture (6 mg/kg or 30 mg/kg in corn oil). Feces were collected for 24 h after PCB administration, PCB metabolites were extracted from pooled samples, and the extracts were analyzed by Nt-HRMS. Twelve classes of PCB metabolites were detected in the feces from CV mice, including PCB sulfates, hydroxylated PCB sulfates (OH-PCB sulfates), PCB sulfonates, and hydroxylated methyl sulfone PCBs (OH-MeSO₂-PCBs) reported previously. We also observed eight additional PCB metabolite classes that were tentatively identified as hydroxylated PCBs (OH-PCBs), dihydroxylated PCBs (DiOH-PCBs), monomethoxylated dihydroxylated PCBs (MeO-OH-PCBs), methoxylated PCB sulfates (MeO-PCB sulfates), mono-to tetra-hydroxylated PCB quinones ((OH)ₓ-quinones, x = 1–4), and hydroxylated polychlorinated benzofurans (OH-PCDF). Most metabolite classes were also detected in the feces from GF mice, except for MeO-OH-PCBs, OH-MeSO₂-PCBs, and OH-PCDFs. Semi-quantitative analyses demonstrate that relative PCB metabolite levels increased with increasing dose and were higher in CV than GF mice, except for PCB sulfates and MeO-PCB sulfates, which were higher in GF mice. These findings demonstrate that the gut microbiome plays a direct or indirect role in the absorption, distribution, metabolism, or excretion of PCB metabolites, which in turn may affect toxic outcomes following PCB exposure.
Mostrar más [+] Menos [-]Microplastic concentrations in cultured oysters in two seasons from two bays of Baja California, Mexico Texto completo
2021
Lozano-Hernández, Eduardo Antonio | Ramírez-Álvarez, Nancy | Rios Mendoza, Lorena Margarita | Macías-Zamora, José Vinicio | Sánchez-Osorio, José Luis | Hernández-Guzmán, Félix Augusto
As filter feeders, bivalve mollusks have a high potential risk of contamination by microplastics (MPs), which can be considered a transfer vector for humans through their consumption. Spatial-temporal differences in the MP concentration were evaluated in the cultured oyster Magallana gigas in Todos Santos Bay (TSB) and San Quintin Bay (SQB) during winter and summer (2019). MPs were found in all samples in both seasons, where microfibers were the most abundant particles observed. Only in winter, statistically significant differences were observed in the average concentration of ingested MPs between oysters from TSB and SQB. In each bay, the highest concentrations were observed during winter. Seasonal differences between MP concentrations were only found in TSB. During summer, the content of MPs was compared between the digestive system and the rest of the soft tissue in organisms from each site, and statistically significant differences were not observed, except by one site in SQB. Polymers were identified via μ-FTIR-ATR spectrometry. Polyester, polyacrylonitrile, and rayon were the most common plastics detected. However, due to the low concentration of MPs found in oysters, its consumption does not represent a risk to human health. Moreover, MP concentrations in organisms appear to respond to variables, such as temporality and the water circulation dynamics within the bays.
Mostrar más [+] Menos [-]Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress Texto completo
2021
Yu, Longtao | Yang, Heyan | Cheng, Fuping | Wu, Zhihao | Huang, Qiang | He, Xujiang | Yan, Weiyu | Zhang, Lizhen | Wu, Xiaobo
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
Mostrar más [+] Menos [-]Trophic transfer of microplastics from mysids to fish greatly exceeds direct ingestion from the water column Texto completo
2021
Hasegawa, Takaaki | Nakaoka, Masahiro
Predators ingest microplastics directly from the environment and indirectly via trophic transfer, yet studies have not investigated the contribution of each pathway to microplastic ingestion in fish. We assessed the relative importance of the two exposure routes using mysids (Neomysis spp.) and a benthic fish (Myoxocephalus brandti) as a model prey-predator system. We first exposed the mysids to fluorescent polyethylene beads (27–32 μm) at concentrations of 200 and 2000 μg/L. We then exposed the fish to water containing the same concentrations of polyethylene beads or to nine mysids pre-exposed to polyethylene beads. We quantified the size and overall mass of polyethylene beads in mysids and in fish to assess polyethylene beads fragmentation by the mysids. Mysids ingested 2–3 more polyethylene beads from water containing the higher concentration, and fish ingested 3–11 times more polyethylene beads via trophic transfer than from the water column. The percentage of fragmented particles was higher in mysids and in fish fed bead-exposed mysids, suggesting that the mysids can fragment polyethylene beads. Our experiments demonstrate that trophic transfer is a major route of microplastic ingestion by fish and that prey such as mysids can fragment microplastics. Small particles can translocate from the digestive system into tissues and exert adverse physiological effects. Trophic transfer of microplastics may therefore pose more serious threats to organisms at higher trophic levels.
Mostrar más [+] Menos [-]Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.) Texto completo
2020
Zhu, Lizhen | Qi, Suzhen | Xue, Xiaofeng | Niu, Xinyue | Wu, Liming
Recently, environmental risk and toxicity of neonicotinoid insecticides to honey bees have attracted extensive attention. However, toxicological understanding of neonicotinoid insecticides on gut microbiota is limited. In the present study, honey bees (Apis mellifera L.) were exposed to a series of nitenpyram for 14 days. Results indicated that nitenpyram exposure decreased the survival and food consumption of honey bees. Furthermore, 16S rRNA gene sequencing revealed that nitenpyram caused significant alterations in the relative abundance of several key gut microbiotas, which contribute to metabolic homeostasis and immunity. Using high-throughput RNA-Seq transcriptomic analysis, we identified a total of 526 differentially expressed genes (DEGs) that were significantly altered between nitenpyram-treated and control honey bee gut, including several genes related to metabolic, detoxification and immunity. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed nitenpyram affected several biological processes, of which most were related to metabolism. Collectively, our study demonstrates that the dysbiosis of gut microbiota in honey bee caused by nitenpyram may influence metabolic homeostasis and immunity of bees, and further decrease food consumption and survival of bees.
Mostrar más [+] Menos [-]Multidisciplinary approach to determine the effect of polybrominated diphenyl ethers on gut microbiota Texto completo
2020
Cruz, Rebeca | Palmeira, Josman D. | Martins, Zita E. | Faria, Miguel A. | Ferreira, Helena | Marques, António | Casal, Susana | Cunha, Sara C.
Environmental health is increasingly compromised by persistent toxic substances, which may have serious implications in food safety and, thus, in human health. Polybrominated diphenyl ethers (PBDEs) are anthropogenic contaminants with endocrine disruption abilities and are commonly found in seafood, the main route of human exposure. Growing evidence points out that the human gut microbiota interacts with xenobiotics, which may lead to impairment of host homeostasis if functions of microbiota become compromised. The aim of this study was to ascertain if the physiological balance of human gut microbiome is affected by the presence and degree of exposure to PBDEs. Fermentation was performed in a batch closed-system using an inoculum made from fresh human stool. The volatolomic profile was analysed by solid-phase microextraction coupled to gas chromatography-mass spectrometry. Mesophilic, Gram-negative bacteria and coliforms were quantified by classic plating methods. Changes in the gut microbiome were evaluated after DNA extraction followed by deep sequencing of the 16S rDNA region. The exposure to PBDEs resulted in an imbalance in sulfur, short-chain fatty acids and aromatic organic compounds, changing the microbial volatolome in a dose- and time-dependent manner. Slight deviations in the microbial structure of human gut occurred in the presence of PBDEs, especially for high doses of exposure. For the first time, the impact of PBDEs on the microbial homeostasis of human gut microbiota was taken into consideration, revealing noteworthy modifications with serious health implications even at oral exposure doses considered as safe by worldwide regulatory entities.
Mostrar más [+] Menos [-]Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization Texto completo
2020
Peng, Bo-Yu | Li, Yiran | Fan, Rui | Chen, Zhibin | Chen, Jiabin | Brandon, Anja M. | Criddle, Craig S. | Zhang, Yalei | Wu, Weimin
Larvae of Zophobas atratus (synonym as Z. morio, or Z. rugipes Kirsch, Coleoptera: Tenebrionidae) are capable of eating foams of expanded polystyrene (EPS) and low-density polyethylene (LDPE), similar to larvae of Tenebrio molitor. We evaluated biodegradation of EPS and LDPE in the larvae from Guangzhou, China (strain G) and Marion, Illinois, U.S. (strain M) at 25 °C. Within 33 days, strain G larvae ingested respective LDPE and PS foams as their sole diet with respective consumption rates of 58.7 ± 1.8 mg and 61.5 ± 1.6 mg 100 larvae⁻¹d⁻¹. Meanwhile, strain M required co-diet (bran or cabbage) with respective consumption rates of 57.1 ± 2.5 mg and 30.3 ± 7.7 mg 100 larvae⁻¹ d⁻¹. Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and thermal gravimetric analyses indicated oxidation and biodegradation of LDPE and EPS in the two strains. Gel permeation chromatography analysis revealed that strain G performed broad depolymerization of EPS, i.e., both weight-average molecular weight (Mw) and number-average molecular weight (Mₙ) of residual polymers decreased, while strain M performed limited extent depolymerization, i.e., Mw and Mₙ increased. However, both strains performed limited extent depolymerization of LDPE. After feeding antibiotic gentamicin, gut microbes were suppressed, and Mw and Mₙ of residual LDPE and EPS in frass were basically unchanged, implying a dependence on gut microbes for depolymerization/biodegradation. Our discoveries indicate that gut microbe-dependent LDPE and EPS biodegradation is present within Z. atratus in Tenebrionidae, but that the limited extent depolymerization pattern resulted in undigested polymers with high molecular weights in egested frass.
Mostrar más [+] Menos [-]