Refinar búsqueda
Resultados 1-10 de 49
Selecting the best stabilization/solidification method for the treatment of oil-contaminated soils using simple and applied best-worst multi-criteria decision-making method
2020
Kujlu, Rahele | Moslemzadeh, Mehrdad | Rahimi, Somayeh | Aghayani, Ehsan | Ghanbari, Farshid | Mahdavianpour, Mostafa
Oil-contaminated soils resulted from drilling activities can cause significant damages to the environment, especially for living organisms. Treatment and management of these soils are the necessity for environmental protection. The present study investigates the field study of seven oil-contaminated soils treated by different stabilization/solidification (S/S) methods, and the selection of the best treated site and treatment method. In this study, first, the ratios of consumed binders to the contaminated soils (w/w) and the treatment times for each unit of treated soils were evaluated. The ratios of consumed binders to the contaminated soils were between 6 and 10% and the treatment times for each unit of treated soils were between 4.1 and 18.5 min/m³. Physicochemical characteristics of treated soils were also determined. Although S/S methods didn’t change the water content of treated soils, they increased the porosity of soils. Unexpectedly, the cement-based S/S methods didn’t increase the pH of the treated soils. The highest and the lowest leaching of petroleum hydrocarbons was belonging to S/S using diatomaceous earth (DE) and the combination of Portland cement, sodium silicate and DE (CS-DE), respectively. The best acid neutralization capacity was obtained for soils treated using the combination of Portland cement and sodium silicate (CS). Based on the best-worst multi-criteria decision-making method (BWM-MCDM), the soils treated using CS-DE was select as the best. The BWM-MCDM can be used as an effective tool for the selection of the best alternative in all areas of environmental decontamination.
Mostrar más [+] Menos [-]Impact of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges
2018
Fang, James K.H. | Rooks, Christine A. | Krogness, Cathinka M. | Kutti, Tina | Hoffmann, Friederike | Bannister, Raymond J.
To meet the increasing global energy demand, expanding exploration for oil and gas reserves as well as associated drilling activities are expected in the Arctic-boreal region where sponge aggregations contribute to up to 90% of benthic biomass. These deep-water sponges along with their microbial endobionts play key roles in the nitrogen cycling in Arctic-boreal ecosystems. This study aimed to investigate the effects of drilling discharges and associated sediment resuspension events on net fluxes of oxygen, ammonium, nitrate and nitrite in three common deep-water sponge species in the form of explants. Sponges were exposed to suspended bentonite and barite, the primary particulate compounds in drilling waste, as well as suspended natural sediment particles for a period of 33 days (on average 10 mg L−1 for 12 h day−1). The exposure period was followed by a pollution abatement period for a further 33 days. No sponge mortality was observed during the experiment. However, exposure to these particles, especially to barite, led to reduced oxygen consumption by up to 33% that was linearly correlated with reduced nitrite/nitrate release by the sponges. The changes in net fluxes were accompanied by decreased tissue oxygenation by up to 54% within the sponges. These findings reveal the effects of fine particles on sponge metabolic processes by reducing aerobic respiration and microbial nitrification, and possibly by favouring anaerobic processes such as microbial denitrification. Most of the sponge responses recovered to their control levels upon the pollution abatement period, but the effects caused by barite may not be reversible. Our findings provide the first insight into the ecological consequences of oil and gas drilling activities on sponge-mediated nitrogen cycling in the Arctic-boreal region.
Mostrar más [+] Menos [-]Widespread legacy brine contamination from oil production reduces survival of chorus frog larvae
2017
Hossack, Blake R. | Puglis, Holly J. | Battaglin, William A. | Anderson, Chauncey W. | Honeycutt, R Ken | Smalling, Kelly L.
Advances in drilling techniques have facilitated a rapid increase in hydrocarbon extraction from energy shales, including the Williston Basin in central North America. This area overlaps with the Prairie Pothole Region, a region densely populated with wetlands that provide numerous ecosystem services. Historical (legacy) disposal practices often released saline co-produced waters (brines) with high chloride concentrations, affecting wetland water quality directly or persisting in sediments. Despite the potential threat of brine contamination to aquatic habitats, there has been little research into its ecological effects. We capitalized on a gradient of legacy brine-contaminated wetlands in northeast Montana to conduct laboratory experiments to assess variation in survival of larval Boreal Chorus Frogs (Pseudacris maculata) reared on sediments from 3 local wetlands and a control source. To help provide environmental context for the experiment, we also measured chloride concentrations in 6 brine-contaminated wetlands in our study area, including the 2 contaminated sites used for sediment exposures. Survival of frog larvae during 46- and 55-day experiments differed by up to 88% among sediment sources (Site Model) and was negatively correlated with potential chloride exposure (Chloride Model). Five of the 6 contaminated wetlands exceeded the U.S. EPA acute benchmark for chloride in freshwater (860 mg/L) and all exceeded the chronic benchmark (230 mg/L). However, the Wetland Site model explained more variation in survival than the Chloride Model, suggesting that chloride concentration alone does not fully reflect the threat of contamination to aquatic species. Because the profiles of brine-contaminated sediments are complex, further surveys and experiments are needed across a broad range of conditions, especially where restoration or remediation actions have reduced brine-contamination. Information provided by this study can help quantify potential ecological threats and help land managers prioritize conservation strategies as part of responsible and sustainable energy development.
Mostrar más [+] Menos [-]Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti
2016
Edge, Katelyn J. | Johnston, Emma L. | Dafforn, Katherine A. | Simpson, Stuart L. | Kutti, Tina | Bannister, Raymond J.
Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite. Sponges were exposed to barite, bentonite and a natural reference sediment at a range of total suspended solid concentrations (TSS = 0, 10, 50 or 100 mg/L) for 12 h after which we measured a suite of biomarker responses (lysosomal membrane stability, lipid peroxidation and glutathione). In addition, we compared biomarker responses, organic energy content and metal accumulation in sponges, which had been continuously or intermittently exposed to suspended barite and natural sediment for 14 d at relevant concentrations (10 and 30 mg TSS/L). Lysosomal membrane stability was reduced in the sponges exposed to barite at 50 and 100 mg TSS/L after just 12 h and at 30 mg TSS/L for both continuous and intermittent exposures over 14 d. Evidence of compromised cellular viability was accompanied by barite analysis revealing concentrations of Cu and Pb well above reference sediments and Norwegian sediment quality guidelines. Metal bioaccumulation in sponge tissues was low and the total organic energy content (determined by the elemental composition of organic tissue) was not affected. Intermittent exposures to barite resulted in less toxicity than continuous exposure to barite. Short term exposures to bentonite did not alter any biomarker responses. This is the first time that these biomarkers have been used to indicate contaminant exposure in an arctic-boreal sponge. Our results illustrate the potential toxicity of barite and the importance of assessments that reflect the ways in which these contaminants are delivered under environmentally realistic conditions.
Mostrar más [+] Menos [-]Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation
2018
Guerra, Alaine B. | Oliveira, Jorge S. | Silva-Portela, Rita C.B. | Araújo, Wydemberg | Carlos, Aline C. | Vasconcelos, Ana Tereza R. | Freitas, Ana Teresa | Domingos, Yldeney Silva | de Farias, Mirna Ferreira | Fernandes, Glauber José Turolla | Agnez-Lima, Lucymara F.
Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation.
Mostrar más [+] Menos [-]Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill
2017
Romero, Isabel C. | Toro-Farmer, Gerardo | Diercks, Arne-R. | Schwing, Patrick | Muller-Karger, Frank | Murawski, Steven | Hollander, David J.
The blowout of the Deepwater Horizon (DWH) drilling rig in 2010 released an unprecedented amount of oil at depth (1,500 m) into the Gulf of Mexico (GoM). Sedimentary geochemical data from an extensive area (∼194,000 km2) was used to characterize the amount, chemical signature, distribution, and extent of the DWH oil deposited on the seafloor in 2010–2011 from coastal to deep-sea areas in the GoM. The analysis of numerous hydrocarbon compounds (N = 158) and sediment cores (N = 2,613) suggests that, 1.9 ± 0.9 × 104 metric tons of hydrocarbons (>C9 saturated and aromatic fractions) were deposited in 56% of the studied area, containing 21± 10% (up to 47%) of the total amount of oil discharged and not recovered from the DWH spill. Examination of the spatial trends and chemical diagnostic ratios indicate large deposition of weathered DWH oil in coastal and deep-sea areas and negligible deposition on the continental shelf (behaving as a transition zone in the northern GoM). The large-scale analysis of deposited hydrocarbons following the DWH spill helps understanding the possible long-term fate of the released oil in 2010, including sedimentary transformation processes, redistribution of deposited hydrocarbons, and persistence in the environment as recycled petrocarbon.
Mostrar más [+] Menos [-]Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma
2022
Solé, Marta | De Vreese, Steffen | Fortuño, José-Manuel | van der Schaar, Mike | Sánchez, Antonio M. | André, Michel
The installation of marine renewable energy devices (MREDs, wind turbines and converters of wave, tidal and ocean thermal energy) has increased quickly in the last decade. There is a lack of knowledge concerning the effects of MREDs on benthic invertebrates that live in contact with the seabed. The European common cuttlefish (Sepia officinalis) is the most abundant cephalopod in the Northeast Atlantic and one of the three most valuable resources for English Channel fisheries. A project to build an offshore wind farm in the French bay of Saint-Brieuc, near the English Channel, raised concern about the possible acoustic impact on local cuttlefish communities. In this study, consisting of six exposure experiments, three types of noise were considered: 3 levels of pile-driving and 3 levels of drilling. The objectives were to assess possible associated changes in hatching and larva survival, and behavioural and ultrastructural effects on sensory organs of all life stages of S. officinalis populations. After exposure, damage was observed in the statocyst sensory epithelia (hair cell extrusion) in adults compared to controls, and no anti-predator reaction was observed. The exposed larvae showed a decreased survival rate with an increasing received sound level when they were exposed to maximum pile-driving and drilling sound levels (170 dB re 1 μPa² and 167 dB re 1 μPa², respectively). However, sound pressure levels's lower than 163 dB re 1 μPa² were not found to elicit severe damage. Simulating a scenario of immobile organisms, eggs were exposed to a combination of both pile driving and drilling as they would be exposed to all operations without a chance to escape. In this scenario a decrease of hatching success was observed with increasing received sound levels.
Mostrar más [+] Menos [-]An increase of ammonia emissions from terrestrial ecosystems on the Tibetan Plateau since 1980 deduced from ice core record
2020
Zou, Xiang | Hou, Shugui | Zhang, Wangbin | Liu, Ke | Yu, Jinhai | Pang, Hongxi | Liu, Yaping
Ammonia (NH₃) emissions could have significant impacts on both ecosystems and human health. Ice cores from the Tibetan Plateau contain information about past ammonium (NH₄⁺) deposition, which could yield important insights into historical NH₃ emissions in the surrounding source regions as well as long-distance NH₄⁺ aerosol transport via atmospheric circulation. In this paper, we present a high-resolution atmospheric NH₄⁺ deposition record for the period, 1951–2008, reconstructed from the Zangser Kangri (ZK) ice core in the northern Tibetan Plateau. An empirical orthogonal function (EOF) analysis of major soluble ions (NH₄⁺, NO₃⁻, SO₄²⁻, Cl⁻, Na⁺, K⁺, Mg²⁺ and Ca²⁺) reveals that EOF 1 has significant loadings of all ions, therefore representing common transport pathways, while EOF 2 is only significantly loaded by NH₄⁺ (0.86) and NO₃⁻ (0.35), suggesting a unique signal possibly representing emissions from the surrounding terrestrial ecosystems on the Tibetan Plateau. Backward trajectory analysis indicates that the air masses over the ZK ice core drilling site primarily come from the northwestern Indian Peninsula. NH₃ emissions from agricultural activities in this area likely contribute to the NH₄⁺ deposition of the ZK ice core via the Indian monsoon. Correlations between EOF 2 time series and temperature, normalized difference vegetation index (NDVI) suggest that increasing temperature and vegetation after 1980 likely promoted NH₃ emissions from terrestrial ecosystems. Our results provide a reliable and valuable assessment of NH₄⁺ deposition from human activities and terrestrial ecosystems in the ZK ice core, and help in understanding air pollution over the past few decades in the northern Tibetan Plateau.
Mostrar más [+] Menos [-]Bioremediation of diesel from a rocky shoreline in an arid tropical climate
2015
Guerin, Turlough F.
A non invasive sampling and remediation strategy was developed and implemented at shoreline contaminated with spilt diesel. To treat the contamination, in a practical, cost-effective, and safe manner (to personnel working on the stockpiles and their ship loading activity), a non-invasive sampling and remediation strategy was designed and implemented since the location and nature of the impacted geology (rock fill) and sediment, precluded conventional ex-situ and any in-situ treatment where drilling is required. A bioremediation process using surfactant, and added N & P and increased aeration, increased the degradation rate allowing the site owner to meet their regulatory obligations. Petroleum hydrocarbons decreased from saturation concentrations to less than detectable amounts at the completion of treatment.
Mostrar más [+] Menos [-]Combining molecular fingerprints with multidimensional scaling analyses to identify the source of spilled oil from highly similar suspected oils
2015
Zhou, Peiyu | Chen, Changshu | Ye, Jianjun | Shen, Wenjie | Xiong, Xiaofei | Hu, Ping | Fang, Hongda | Huang, Chuguang | Sun, Yongge
Oil fingerprints have been a powerful tool widely used for determining the source of spilled oil. In most cases, this tool works well. However, it is usually difficult to identify the source if the oil spill accident occurs during offshore petroleum exploration due to the highly similar physiochemical characteristics of suspected oils from the same drilling platform. In this report, a case study from the waters of the South China Sea is presented, and multidimensional scaling analysis (MDS) is introduced to demonstrate how oil fingerprints can be combined with mathematical methods to identify the source of spilled oil from highly similar suspected sources. The results suggest that the MDS calculation based on oil fingerprints and subsequently integrated with specific biomarkers in spilled oils is the most effective method with a great potential for determining the source in terms of highly similar suspected oils.
Mostrar más [+] Menos [-]