Refinar búsqueda
Resultados 1-10 de 35
Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent
2019
Phu Nguyen, Ly Sy | Zhang, Leiming | Lin, Da-Wei | Lin, Neng-Huei | Sheu, Guey-Rong
Atmospheric deposition, either dry or wet, has been identified as an important pathway of mercury (Hg) input to terrestrial and aquatic systems. Although East Asia is the major atmospheric Hg emission source region, very few studies have been conducted to quantify atmospheric Hg deposition in its downwind region. In this study, 8-year (2009–2016) atmospheric Hg dry deposition was reported at the Lulin Atmospheric Background Station (LABS), a high mountain forest site in central Taiwan. Dry deposition of speciated Hg was estimated using a bi-directional air-surface flux exchange model for gaseous elemental mercury (GEM) and dry deposition models for gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM), making use of the monitored speciated atmospheric Hg concentrations. Annual total Hg dry deposition ranged from 51.9 to 84.9 μg m−2 yr−1 with a multi-year average of 66.1 μg m−2 yr−1. Among the three forms of atmospheric Hg, GEM was the main contributor to the total dry deposition, contributing about 77.8% to the total, due to the high density of forest canopy as well as the much higher concentration of GEM than GOM and PBM at LABS. Mercury dry deposition is higher in winter and spring than in summer and fall, partly due to the elevated Hg concentrations associated with air masses from East and Southeast Asia where with high atmospheric Hg emissions. The mean annual dry/wet deposition ratio of 2.8 at LABS indicated that Hg deposition to forest landscape was governed by dry rather than wet deposition.
Mostrar más [+] Menos [-]Allergenicity of recombinant Humulus japonicus pollen allergen 1 after combined exposure to ozone and nitrogen dioxide
2018
Hong, Qiang | Zhou, Shumin | Zhao, Hui | Peng, Jiaxian | Li, Yang | Shang, Yu | Wu, Minghong | Zhang, Wei | Lu, Senlin | Li, Shuijun | Yu, Shen | Wang, Weiqian | Wang, Qingyue
Ozone (O₃) and nitrogen dioxide (NO₂) are thought to play primary roles in aggravating air pollution-induced health problems. However, the effects of joint O₃/NO₂ on the allergenicity of pollen allergens are unclear. Humulus japonicus pollen allergen 1 (Hum j1) is a profilin protein that causes widespread pollinosis in eastern Asia. In order to study the effects of combined O₃/NO₂ on the allergenicity of Hum j1, tandem six-histidine peptide tag (His6)-fused recombinant Hum j1 (rHum j1) was expressed in a prokaryotic system and purified through His6 affinity chromatography. The purified rHum j1 was used to immunize SD rats. Rat sera with high titers of IgG and IgE antibodies against rHum j1 were used for allergenicity quantification. The rHum j1 was exposed to O₃/NO₂, and changes in allergenicity of the exposed rHum j1 were assayed using the immunized rat antibodies. Tandem LC-MS/LC (liquid chromatography-mass spectrometer/liquid chromatography spectrometer) chromatography and UV and circular dichroism (CD) spectroscopy were used to study the structural changes in rHum j1. Our data demonstrated that a novel disulfide bond between the sulfhydryl groups of two neighboring cysteine molecules was formed after the rHum j1 exposure to joint O₃/NO₂, and therefore IgE-binding affinity was increased and the allergenicity was reinforced. Our results provided clues to elucidate the mechanism behind air pollution-induced increase in pollinosis prevalence.
Mostrar más [+] Menos [-]The origin and migration of the dissolved sulfate from precipitation in Seoul, Korea
2018
Kim, Yeongmin | Lee, Insung | Lim, Chungwan | Farquhar, James | Lee, Sang-Mook | Kim, Hyoungbum
This study incorporated stable isotope analyses with chemical analyses to determine the origin and migration of sulfur sources in East Asia, and these findings were compared with our decadal research from 2000 to 2001 and 2002 to 2003. The multiple sulfur isotope composition (32S, 33S and 34S) of the dissolved sulfate in precipitation was first measured from 2011 to 2013 in Seoul, South Korea. The δ34Snss values were −1.1‰ to 7.9‰ (avg. 3.6‰), strongly suggesting that sulfur derived from the combustion of Chinese coal is the predominant source of sulfate in the Seoul region. Low NO3/SO42− ratios in the precipitation samples indicated an insignificant effect of sulfur from vehicle exhaust. The seasonal variation of δ34Snss values appears to be caused by increasing biogenic sulfur activity during the spring and summer seasons. The some Δ33S values (0.13‰–0.16‰) measured in the three samples were sufficiently small; thus, whether these values can be attributed to mass-independent fractionation remains unclear. Measuring the Δ33S anomalies in dissolved sulfate provides valuable insights for identifying the sources of sulfur transferred from the stratosphere to the troposphere and upper troposphere.
Mostrar más [+] Menos [-]Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling
2017
Guo, Jianping | Lou, Mengyun | Miao, Yucong | Wang, Yuan | Zeng, Zhaoliang | Liu, Huan | He, Jing | Xu, Hui | Wang, Fu | Min, Min | Zhai, Panmao
East Asia is one of the world's largest sources of dust and anthropogenic pollution. Dust particles originating from East Asia have been recognized to travel across the Pacific to North America and beyond, thereby affecting the radiation incident on the surface as well as clouds aloft in the atmosphere. In this study, integrated analyses are performed focusing on one trans-Pacific dust episode during 12–22 March 2015, based on space-borne, ground-based observations, reanalysis data combined with Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). From the perspective of synoptic patterns, the location and strength of Aleutian low pressure system largely determined the eastward transport of dust plumes towards western North America. Multi-sensor satellite observations reveal that dust aerosols in this episode originated from the Taklimakan and Gobi Deserts. Moreover, the satellite observations suggest that the dust particles can be transformed to polluted particles over the East Asian regions after encountering high concentration of anthropogenic pollutants. In terms of the vertical distribution of polluted dust particles, at the very beginning, they were mainly located in the altitudes ranging from 1 km to 7 km over the source region, then ascended to 2 km–9 km over the Pacific Ocean. The simulations confirm that these elevated dust particles in the lower free troposphere were largely transported along the prevailing westerly jet stream. Overall, observations and modeling demonstrate how a typical springtime dust episode develops and how the dust particles travel over the North Pacific Ocean all the way to North America.
Mostrar más [+] Menos [-]Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives
2016
Marx, Samuel K. | Rashid, Shaqer | Stromsoe, Nicola
During the past two centuries metal loads in the Earth's atmosphere and ecosystems have increased significantly over pre-industrial levels. This has been associated with deleterious effects to ecosystem processes and human health. The magnitude of this toxic metal burden, as well as the spatial and temporal patterns of metal enrichment, is recorded in sedimentary archives across the globe. This paper presents a compilation of selected Pb contamination records from lakes (n = 10), peat mires (n = 10) and ice fields (n = 7) from Europe, North and South America, Asia, Australia and the Northern and Southern Hemisphere polar regions. These records quantify changes in Pb enrichment in remote from source environments. The presence of anthropogenic Pb in the environment has a long history, extending as far back as the early to mid-Holocene in North America, Europe and East Asia. However, results show that Pb contamination in the Earth's environment became globally ubiquitous at the beginning of the Second Industrial Revolution (c.1850–1890 CE), after which the magnitude of Pb contamination increased significantly. This date therefore serves as an effective global marker for the onset of the Anthropocene. Current global average Pb enrichment rates are between 6 and 35 times background, however Pb contamination loads are spatially variable. For example, they are >100 times background in Europe and North America and 5–15 times background in Antarctica. Despite a recent decline in Pb loads in some regions, most notably Europe and North America, anthropogenic Pb remains highly enriched and universally present in global ecosystems, while concentrations are increasing in some regions (Australia, Asia and parts of South America and Antarctica). There is, however, a paucity of Pb enrichment records outside of Europe, which limits assessments of global contamination.
Mostrar más [+] Menos [-]Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model
2014
Dai, Tie | Schutgens, Nick A.J. | Gotō, Daisuke | Shi, Guangyu | Nakajima, Teruyuki
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only.
Mostrar más [+] Menos [-]Absorption properties and forcing efficiency of light-absorbing water-soluble organic aerosols: Seasonal and spatial variability
2021
Choudhary, Vikram | Rajput, Prashant | Gupta, Tarun
Light-absorbing organic aerosols, also known as brown carbon (BrC), enhance the warming effect of the Earth’s atmosphere. The seasonal and spatial variability of BrC absorption properties is poorly constrained and accounted for in the climate models resulting in a substantial underestimation of their radiative forcing estimates. This study reports seasonal and spatial variability of absorption properties and simple forcing efficiency of light-absorbing water-soluble organic carbon (WSOC, SFEWSOC) by utilizing current and previous field-based measurements reported mostly from Asia along with a few observations from Europe, the USA, and the Amazon rainforest. The absorption coefficient of WSOC at 365 nm (bₐbₛ₋₃₆₅) and the concentrations of carbonaceous species at Kanpur were about an order of magnitude higher during winter than in the monsoon season owing to differences in the boundary layer height, active sources and their strengths, and amount of seasonal wet precipitation. The WSOC aerosols during winter exhibited ∼1.6 times higher light absorption capacity than in the monsoon season at Kanpur site. The assessment of spatial variability of the imaginary component of the refractive index spectrum (kλ) across South Asia has revealed that it varies from ∼1 to 2 orders of magnitude and light absorption capacity of WSOC ranges from 3 to 21 W/g. The light absorption capacity of WSOC aerosols exhibited less spatial variability across East Asia (5–13 W/g) when compared to that in the South Asia. The photochemical aging of WSOC aerosols, indicated by the enhancement in WSOC/OC ratio, was linked to degradation in their light absorption capacity, whereas the absorption Ångström exponent (AAE) remained unaffected. This study recommends the adoption of refined climate models where sampling regime specific absorption properties are calculated separately, such that these inputs can better constrain the model estimates of the global effects of BrC.
Mostrar más [+] Menos [-]Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia
2021
Kang, Yoojin | Choi, Hyunyoung | Im, Jungho | Park, Seohui | Shin, Minso | Song, Chang-Keun | Kim, Sangmin
In East Asia, air quality has been recognized as an important public health problem. In particular, the surface concentrations of air pollutants are closely related to human life. This study aims to develop models for estimating high spatial resolution surface concentrations of NO₂ and O₃ from TROPOspheric Monitoring Instrument (TROPOMI) data in East Asia. The machine learning was adopted by fusion of various satellite-based variables, numerical model-based meteorological variables, and land-use variables. Four machine learning approaches—Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boost (XGB), and Light Gradient Boosting Machine (LGBM)—were evaluated and compared with Multiple Linear Regression (MLR) as a base statistical method. This study also modeled the NO₂ and O₃ concentrations over the ocean surface (i.e., land model for scheme 1 and ocean model for scheme 2). The estimated surface concentrations were validated through three cross-validation approaches (i.e., random, temporal, and spatial). The results showed that the NO₂ model produced R² of 0.63–0.70 and normalized root-mean-square-error (nRMSE) of 38.3–42.2% and the O₃ model resulted in R² of 0.65–0.78 and nRMSE of 19.6–24.7% for scheme 1. The indirect validation based on the stations near the coastline for scheme 2 showed slight decrease (~0.3–2.4%) in nRMSE when compared to scheme 1. The contributions of input variables to the models were analyzed based on SHapely Additive exPlanations (SHAP) values. The NO₂ vertical column density among the TROPOMI-derived variables showed the largest contribution in both the NO₂ and O₃ models.
Mostrar más [+] Menos [-]De novo transcriptomic analysis predicts the effects of phenolic compounds in Ba River on the liver of female sharpbelly (Hemiculter lucidus)
2020
Guo, J. (Jiahua) | Mo, Jiezhang | Zhao, Qian | Han, Qizhi | Kanerva, Mirella | Iwata, Hisato | Li, Qi
This work aimed at predicting the toxic effects of phenolic compounds in Ba River on the health of female sharpbelly (Hemiculter lucidus) by the de novo transcriptomic analysis of the liver. Sharpbelly, a native fish living in freshwater ecosystem of East Asia, were sampled upstream, near, and downstream of a wastewater discharge to the Ba river. Based on the occurrence of bisphenol A (BPA), nonylphenol (NP), and 4-tert-octylphenol (4-t-OP) in the water and fish sampled from each site, up-, mid-, and down-stream were interpreted as control, high, and low treatment groups, respectively. In the mid-stream group the Fulton’s condition factor (CF) and body weight were remarkably increased by approximate 20%; the gonado-somatic index (GSI) and hepatosomatic index (HSI) in mid-stream fish showed a similar increasing trend but lacking of statistical difference. Exposure to wastewater effluent caused 160 and 162 differentially expressed genes (DEGs) in up-mid and down-mid stream groups, respectively. Two sets of DEGs were primarily enriched in the signaling pathways of drug metabolism, endocrine system, cellular process, and lipid metabolism in the mid-stream sharpbelly, which may alter the fish behavior, disrupt the reproductive function, and lead to hypothyroidism, hepatic steatosis, etc. Taken together, our results linked the disrupted signaling pathways with activities of phenolic compounds to predict the potential effects of wastewater effluent on the health of wild fish.
Mostrar más [+] Menos [-]Chinese province-scale source apportionments for sulfate aerosol in 2005 evaluated by the tagged tracer method
2017
Appropriate policies to improve air quality by reducing anthropogenic emissions are urgently needed. This is typified by the particulate matter (PM) problem and it is well known that one type of PM, sulfate aerosol (SO42−), has a large-scale impact due to long range transport. In this study we evaluate the source–receptor relationships of SO42− over East Asia for 2005, when anthropogenic sulfur dioxide (SO2) emissions from China peaked. SO2 emissions from China have been declining since 2005–2006, so the possible maximum impact of Chinese contributions of SO42− is evaluated. This kind of information provides a foundation for policy making and the estimation of control effects. The tagged tracer method was applied to estimate the source apportionment of SO42− for 31 Chinese province-scale regions. In addition, overall one-year source apportionments were evaluated to clarify the seasonal dependency. Model performance was confirmed by comparing with ground-based observations over mainland China, Taiwan, Korea, and Japan, and the model results fully satisfied the performance goal for PM. We found the following results. Shandong and Hebei provinces, which were the largest and second largest SO2 sources in China, had the greatest impact over the whole of East Asia with apportionments of around 10–30% locally and around 5–15% in downwind receptor regions during the year. Despite large SO2 emissions, the impact of south China (e.g., Guizhou, Guangdong, and Sichuan provinces) was limited to local impact. These results suggest that the reduction policy in south China contributes to improving the local air quality, whereas policies in north and central China are beneficial for both the whole of China and downwind regions. Over Taiwan, Korea, and Japan, the impact of China was dominant; however, local contributions were important during summer.
Mostrar más [+] Menos [-]