Refinar búsqueda
Resultados 1-4 de 4
The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: A review
2014
Ardestani, Masoud M. | Straalen, N. M. van | van Gestel, Cornelis A.M.
The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase.
Mostrar más [+] Menos [-]PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex
2018
Weber, Annkatrin | Scherer, Christian | Brennholt, Nicole | Reifferscheid, Georg | Wagner, Martin
Over the past decade, microscopic plastic debris, known as microplastics, emerged as a contaminant of concern in marine and freshwater ecosystems. Although regularly detected in aquatic environments, the toxicity of those synthetic particles is not well understood. To address this, we investigated whether the exposure to microplastics adversely affects the amphipod Gammarus pulex, a key freshwater invertebrate.Juvenile (6–9 mm) and adult (12–17 mm) individuals were exposed to irregular, fluorescent polyethylene terephthalate fragments (PET, 10–150 μm; 0.8–4,000 particles mL⁻¹) for 24 h. Results show that body burden after 24 h depends on the dose and age of G. pulex with juveniles ingesting more microplastics than adults. After chronic exposure over 48 d, microplastics did not significantly affect survival, development (molting), metabolism (glycogen, lipid storage) and feeding activity of G. pulex.This demonstrates that even high concentrations of PET particles did not negatively interfere with the analyzed endpoints. These results contradict previous research on marine crustaceans. Differences may result from variations in the exposure regimes (e.g., duration, particle concentrations), plastic characteristics (e.g., type, size, shape, additives) as well as the species-specific morphological, physiological and behavioral traits. As a detritivorous shredder G. pulex is adapted to feed on non-digestible materials and might, therefore, be less sensitive towards exposure to synthetic particles. Accordingly, we argue that the autecology needs to be taken into account and that research should focus on identifying traits that render species susceptible to microplastic exposure.
Mostrar más [+] Menos [-]Field-realistic exposure to the androgenic endocrine disruptor 17β-trenbolone alters ecologically important behaviours in female fish across multiple contexts
2018
Bertram, Michael G. | Saaristo, Minna | Martin, Jake M. | Ecker, Tiarne E. | Michelangeli, Marcus | Johnstone, Christopher P. | Wong, Bob B.M.
The capacity of pharmaceutical pollution to alter behaviour in wildlife is of increasing environmental concern. A major pathway of these pollutants into the environment is the treatment of livestock with hormonal growth promotants (HGPs), which are highly potent veterinary pharmaceuticals that enter aquatic ecosystems via effluent runoff. Hormonal growth promotants are designed to exert biological effects at low doses, can act on physiological pathways that are evolutionarily conserved across taxa, and have been detected in ecosystems worldwide. However, despite being shown to alter key fitness-related processes (e.g., development, reproduction) in various non-target species, relatively little is known about the potential for HGPs to alter ecologically important behaviours, especially across multiple contexts. Here, we investigated the effects of exposure to a field-realistic level of the androgenic HGP metabolite 17β-trenbolone—an endocrine-disrupting chemical that has repeatedly been detected in freshwater systems—on a suite of ecologically important behaviours in wild-caught female eastern mosquitofish (Gambusia holbrooki). First, we found that 17β-trenbolone-exposed fish were more active and exploratory in a novel environment (i.e., maze arena), while boldness (i.e., refuge use) was not significantly affected. Second, when tested for sociability, exposed fish spent less time in close proximity to a shoal of stimulus (i.e., unexposed) conspecific females and were, again, found to be more active. Third, when assayed for foraging behaviour, exposed fish were faster to reach a foraging zone containing prey items (chironomid larvae), quicker to commence feeding, spent more time foraging, and consumed a greater number of prey items, although the effect of exposure on certain foraging behaviours was dependent on fish size. Taken together, these findings highlight the potential for exposure to sub-lethal levels of veterinary pharmaceuticals to alter sensitive behavioural processes in wildlife across multiple contexts, with potential ecological and evolutionary implications for exposed populations.
Mostrar más [+] Menos [-]Effect of nanoplastics on fish health and performance: A review
2020
Barría, Camila | Brandts, Irene | Tort, Lluís | Oliveira, Miguel | Teles, Mariana
Small plastic particles are considered emerging pollutants, and this has motivated a considerable number of studies to establish their environmental consequences. At present, the study of the effects of nanoplastics (NPs) on aquatic organisms is still scarce, especially in organisms from higher trophic levels such as fish. This review describes the effects reported in different fish species after exposure to plastic particles smaller than 100 nm. Studies show that NPs can adversely affect fish at different stages of development, with reported accumulation in tissues, decreased locomotor and foraging activities, effects on growth and the immune system and alterations on lipid metabolism and neurotoxicity. However, mortality, effects on hatching success or malformations related to NPs have not been reported to this date.
Mostrar más [+] Menos [-]