Refinar búsqueda
Resultados 1-10 de 111
Inputs and sources of Pb and other metals in urban area in the post leaded gasoline era Texto completo
2022
Ye, Jiaxin | Li, Junjie | Wang, Pengcong | Ning, Yongqiang | Liu, Jinling | Yu, Qianqian | Bi, Xiangyang
The contamination status of heavy metals in urban environment changes frequently with the industrial structure adjustment, energy conservation and emission reduction and thus requires timely investigation. Based on enrichment factor, multivariate statistical analysis and isotope fingerprinting, we assessed comprehensively the inputs and sources of heavy metals in different samples from an urban area that was less impacted by leaded gasoline exhaust. The road dust contained relatively high levels of Cr, Pb and Zn (with enrichment factor >2) that originated from both exhaust and non-exhaust traffic emissions, while the moss plants could accumulate high levels of Pb and Zn from the deposition of traffic exhaust emission. This suggest that the traffic emission is still an important source of metals in the urban area although gasoline is currently lead free. On the contrary, the occurrences of metals in the urban soils were controlled by natural sources and non-traffic anthropogenic emission. These findings revealed that different samples would receive different inputs of metals from different sources in the urban area, and the responsiveness and sensitiveness of these urban samples to metal inputs can be ranked as moss ≥ dust > soil. Taken together, our results suggested that in order to avoid generalizing and get detail source information, multi-samples and multi-measures must be adopted in the assessment of integrated urban environmental quality.
Mostrar más [+] Menos [-]Sustainable remediation of lube oil-contaminated soil by low temperature indirect thermal desorption: Removal behaviors of contaminants, physicochemical properties change and microbial community recolonization in soils Texto completo
2021
Sang, Yimin | Yu, Wang | He, Liao | Wang, Zhefeng | Ma, Fujun | Jiao, Wentao | Gu, Qingbao
Thermal desorption is widely adopted for the remediation of organic compounds, yet is generally considered a non-green-sustainable manner owing to its energy-intensive nature and potential to deteriorate soil reuse. Here, lube oil-contaminated soils were remediated at 200–500 °C in nitrogen atmosphere, upon which removal behaviors of lube oil and physicochemical properties of soils were explored. Illumina 16S ribosomal RNA (rRNA) and 18S rRNA amplicon sequencing were employed to determine the relative abundances and diversities of bacteria and fungi in soils, respectively. The results indicated that, after heating at 350 °C for 60 min, 93% of the lube oil was reduced, with the residual lube oil concentration lower than the Chinese risk intervention values (GB 36600–2018). The weakly-alkaline, multi-phosphorus and char-rich soils after indirect thermal desorption could provide a nutrient source and favorable habitat space for living organisms, and the decomposition of minerals in soils is more conducive to the survival of organisms. Microbial species in soils after heating at 350 °C became extinct, however, microbial species after 3 days of recolonization were enough to carry out DNA extraction when these soils were exposed to natural grass land. Though the microbial richness and diversity in heated soils after 3 days of recolonization were still little lower than those in contaminated soils, Firmicutes (29.41%) and Basidiomycota (9.33%) became dominant at phyla level, while Planomicrobium (16.37%), Massilia (10.09%), Jeotgalibaca (7.91%) and Psychrobacter (6.84%) were dominant at general level, whose ecological function was more conducive to nutrient cycling and ecological resiliency. Overall, this innovative research provides a new perspective: low temperature indirect thermal desorption may also achieve a sustainable remediation, due to its energy-saving (low temperature), favorable physicochemical properties and the rapid recolonization capacity of microbial communities in heated soils.
Mostrar más [+] Menos [-]Lighting up our waterways: Impacts of a current mitigation strategy on riparian bats Texto completo
2022
Hooker, Jack | Lintott, Paul | Stone, Emma
Increasing levels of artificial light at night (ALAN) are a major threat to global biodiversity and can have negative impacts on a wide variety of organisms and their ecosystems. Nocturnal species such as bats are highly vulnerable to the detrimental effects of ALAN. A variety of lighting management strategies have been adopted to minimise the impacts of ALAN on wildlife, however relatively little is known about their effectiveness. Using an experimental approach, we provide the first evidence of negative impacts of part-night lighting (PNL) strategies on bats. Feeding activity of Myotis spp. was reduced along rivers exposed to PNL despite no reduction in overall bat activity. We also provide the first evidence of negative effects of PNL on both feeding and activity for Pipistrellus pipistrellus which has previously been recorded feeding under artificial light. Despite having considerable energy-saving benefits, we outline the potential negative impacts of PNL schemes for bats in riparian habitats. PNL are unlikely to provide desired conservation outcomes for bats, and can potentially fragment important foraging habitats leading to a breakdown of functional connectivity across the landscape. We highlight the potential dichotomy for strategies which attempt to simultaneously address climate change and biodiversity loss and recommend alternative management strategies to limit the impacts of ALAN on biodiversity.
Mostrar más [+] Menos [-]The aggravated short-term PM2.5-related health risk due to atmospheric transport in the Yangtze River Delta Texto completo
2021
Wang, Peng | Shen, Juanyong | Zhu, Shengqiang | Gao, Meng | Ma, Jinlong | Liu, Jie | Gao, Jingsi | Zhang, Hongliang
Severe fine particulate matter (PM₂.₅) pollution and the associated health risks remain pressing issues in the Yangtze River Delta (YRD), although significant efforts have been made locally, such as the Clean Air Action since 2013. Regional transport is an important contributor to high PM₂.₅ levels during haze episodes in the YRD, but its impact on human health is rarely analyzed. In this study, we evaluate the short-term PM₂.₅-related health risks and associated economic losses due to different source regions by estimating daily mortality based on model results in the YRD. The results show that regional transport induces significant health risks in the YRD during haze days, contributing over 60% of daily premature mortality in Shanghai and Nanjing (major cities in the YRD). Moreover, in Hangzhou and Jiaxing, regional transport’s contribution can be as high as 70%. The total daily mean economic loss in the YRD is estimated as 526.8 million Chinese Yuan (approximately 81.4 million U.S. dollar) in winter of 2015 and 2016, accounting for 1.4% of the daily averaged gross domestic product (GDP) of the YRD. Emission control (in accordance with the 13th Five-year Energy Conservation and Emission Reduction Plan) is an effective way to reduce health risks in the YRD, reducing premature deaths during haze days by 12–33%. More stringent emission control measures are suggested for further reduce PM₂.₅-related health risks.
Mostrar más [+] Menos [-]Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal Texto completo
2019
Wu, Linuo | Shen, Mingyu | Li, Jin | Huang, Shan | Li, Zhi | Yan, Zhibin | Peng, Yongzhen
The challenge of sludge digester liquor treatment is its high ammonium nitrogen (NH₄⁺-N) concentration. Early reports found that complete ammonia oxidation (comammox) was not present and anaerobic ammonia oxidation (anammox) was difficult to achieve in most sludge digester liquor treatments. In this study, NH₄⁺-N removal by cooperation between partial-nitrification, comammox, and anammox processes was achieved in a sequencing batch reactor (SBR) for sludge digester liquor treatment. The results showed that 2100–2200 mg/L of NH₄⁺-N was removed in the SBR with 98.82% removal efficiency. In addition, 55.11% of NH₄⁺-N was converted to nitrite nitrogen (NO₂⁻-N) by partial-nitrification, 25.43% of NH₄⁺-N was converted to nitrate nitrogen (NO₃⁻-N) by comammox, and 18.28% of NH₄⁺-N was removed by anammox. During the operation, in the SBR, the relative abundance of the dominant ammonia-oxidizing bacteria (Chitinophagaceae) was 18.89%, that of the dominant anammox bacteria (Candidatus Kuenenia) was 0.10%, and that of the dominant comammox bacteria (Nitrospira) was 0.20%. Therefore, the high nitrogen removal efficiency in this system was considered the result of the combination of the three processes. These results showed that comammox and anammox could play very important roles in nitrogen transformation and energy-saving in nitrogen removal systems.
Mostrar más [+] Menos [-]Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations Texto completo
2016
Hu, Yuanan | Cheng, Hefa
Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants.
Mostrar más [+] Menos [-]Emission reduction from MRTS projects – A case study of Delhi metro Texto completo
2014
Sharma, Niraj | Singh, Anil | Dhyani, Rajni | Gaur, Shweta
Metro rail has been introduced in Delhi in 2002 to provide alternative mode of public transportation. The introduction of metro rail has resulted in passenger ridership shift from road based transport to metro rail. In order to estimate the emissions (CO, HC, NOx, PM and CO2), metro rail ridership has been converted to equivalent number of on–road vehicles which otherwise would have been playing in the absence of mass rapid transit system. The emission estimation for the year 2006 and 2011 corresponding to the completion of phase I and phase II of Delhi metro rail has been made using emission and deterioration factor(s) for different category and vintage of vehicles. The sensitivity analysis has been carried out to assess the influence of different combination of input parameters such as modal shift, engine technology, and fuel type on emissions. In addition, CO2 emissions saved due to shifting of motor vehicle ridership to metro rail has been estimated and compared with the CO2 produced (off–site) due to electricity consumption by Delhi metro rail for its various operations. The findings indicate that present modal shift scenario does not yield CO2 benefits. However, it is expected that with the increase in metro ridership, changes in modal shift and energy conservation initiatives by Delhi metro, CO2 emission saving could be possible.
Mostrar más [+] Menos [-]Energy efficiency of the industrial sectors in Beijing-Tianjin-Hebei urban agglomeration: does technological gap matter? Texto completo
2022
Ouyang, Xiaoling | Jian, Qiuping | Jiang, Zhujun
As the political and technological innovation center of China, Beijing-Tianjin-Hebei urban agglomeration (BTHUA) is an important engine of national economic development. However, the BTHUA is faced with uneven industrial development and environmental pollution problems. Energy efficiency of the industrial sector, critical to energy conservation and environmental protection, is the key to achieving green economic transformation. For this reason, this study adopts the parametric meta-frontier approach to measure the industrial total-factor energy efficiency (TFEE) of the BTHUA, centering on the evaluation of regional technology gap ratio (TGR). Empirical results indicate that there are significant regional disparities of industrial TFEE in the BTHUA. In particular, industrial TFEE tends to be underestimated without considering technological heterogeneity in production technology. The TGRs of manufacturing cities, tourist cities, and the modernized metropolis (Beijing) are the highest among the region. On this basis, the influencing factors of industrial TFEE of the BTHUA are further accessed based on the fixed effects model and the Tobit model. This article verifies that the evaluation of TFEE in the BTHUA must take regional technological gap into account, and provides additional empirical evidence on how to promote coordinated regional industrial development and energy efficiency improvement.
Mostrar más [+] Menos [-]Exploring the driving forces on sustainable energy and water use in China Texto completo
2022
Wang, Lingling | Xia, Enjun | Wei, Zixiang | Wang, Wei
With the rapid growth of global demand for water and energy, the two increasingly restrict economic and social development. The total energy consumption and water use are positively correlated. Identifying the key drivers influencing the energy-water development can realize national resource management and sustainable supplement. In this context, this study aims to capture the key driving forces that affect the sustainable energy-water development characteristics in Chinese change processes throughout 2000–2017. Five driving forces, the EW intensity effect, industrial structure effect, GDP value-added effect, income improvement effect, and population-scale effect, were further decomposed by the logarithmic mean Divisia index (LMDI) model to explore the energy consumption and water use. Our findings indicated that the largest and lowest energy consumers were the manufacturing and construction sectors, while agriculture accounted for the largest share in water use. During the three time intervals, the cumulative effects increased the EW use, but the contributions were declining. Further, these effects had a more prominent influence on water use than energy consumption; GDP value-added effect, income improvement effect, and population-scale effect increased the EW use, while intensity effect played a vital role in decreasing EW use during the study period. Notably, the industrial structure effect had a seesaw role during 2000–2006, which led to a tradeoff between various driving factors. In future sustainable issues, policymakers should pay more attention to energy-saving than water-saving to achieve the national energy and water conservation targets.
Mostrar más [+] Menos [-]Green finance, technological progress, and ecological performance—evidence from 30 Provinces in China Texto completo
2022
Ge, Lin | Zhao, Haoxiang | Yang, Junyao | Yu, Jingyue | He, Taiyi
The interaction between green finance and other factors, such as ecological environment, has been a research hotspot nowadays. Especially, the reasonable guiding of capital into energy conservation and environmental protection industries would greatly affect those factors, so as to the relation between them. This paper aimed to analyze the relationships between green finance, technological progress, and ecological performance quantitatively. The entropy method was used to respectively construct the system of index for green finance and technological progress, and index for ecological performance was measured by the super-SBM model. The panel vector autoregressive (PVAR) model was selected to empirically analyze dynamic relationships based on datasets from 30 provinces in China during 2008–2019 period. The results told that (1) from 2008 to 2019, China’s overall level of green finance, technological progress and ecological performance increased to varying degrees. Spatially, the areas with high-developed green finance greatly coincided with those such as large cities or the eastern coast that had good financial development. The distribution of technological progress index were similar, except some underdeveloped areas with relatively advanced scientific research institutes. The ecological performance, however, was high in the South and low in the north. (2) In the lag for 3 years, the influence of green finance on ecological performance in different regions was all positive for that all the coefficient symbols that passed the significance test were above 0, while that on technological progress was negative first and then positive. And the effects of technological progress on ecological performance were positive in ecological regions and negative in low ecological regions (0.0893 and -0.1211 in the case of three-stage lag respectively). (3) The contribution of green finance to ecological performance was high according to the results of variance decomposition, maintained at about 30%, and that of technological progress increased year by year (from 0.000 to 0.039). Therefore, we proposed to strengthen the development of green finance in underdeveloped regions. The emphasis should be laid on the researches and applications of green technology, the formulation of financing policies in innovation compensation and the establishment of a dynamic monitoring system for the ecological environment.
Mostrar más [+] Menos [-]