Refinar búsqueda
Resultados 1-10 de 887
Vapour of the free acid of the herbicide 2,4-D is toxic to tomato and lettuce plants.
1991
Breeze V.G. | Rensburg E. van
Biodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1
2016
Semboung Lang, Firmin | Destain, Jacqueline | Delvigne, Frank | Druart, Philippe | Ongena, Marc | Thonart, Philippe
peer reviewed | Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons.With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegradation experiment was conducted using mangrove sediments artificially contaminated with a mixture of four PAHs. The study used Rhodococcus erythropolis as an exogenous bacterial strain in order to assess the biodegradation of the PAH mixture by natural attenuation, biostimulation, bioaugmentation, and a combination of biostimulation and bioaugmentation. The results showed that the last three treatments were more efficient than natural attenuation. The biostimulation/bioaugmentation combination proved to be the most effective PAH degradation treatment.
Mostrar más [+] Menos [-]Coupling strategies for ecotoxicological assessment of neonicotinoid insecticides based on their selective lethal effects: Design, screening, and regulation
2022
Zhao, Yuanyuan | Xixi Li, | Xinao Li, | Zheng, Maosheng | Zhang, Yimei | Li, Yu
The recently recognized adverse environmental and toxic effects of neonicotinoid insecticides (NNIs) on non-target organisms are alarming. A comprehensive design, screening, and regulatory system was developed to generate NNI derivatives and mutant receptors with selective-ecotoxicological effects to overcome such adverse effects. For ligand design, taking ACE-09 derivative as an example, the toxicity on non-target animals (aboveground: bees; underground: earthworms), plant absorption, and soil absorption decreased by 4.80% and 13.7%, 10.0%, and 121%, while the toxicity on target animals (aboveground: aphids; underground: B. odoriphagas), plant metabolism, and soil degradation increased by 70.2% and 51.7%, 5.08%, and 8.28%. For receptor modification, the ability of mutants to absorb ACE-09 derivative decreased by 31.0%, while the ability of mutants to metabolize ACE-09 derivative increased by 28.0% in scenario 2 (mainly plant selectivity); the ability of mutants to degrade ACE-09 derivative increased by 11.6% in scenario 3 (mainly soil selectivity). The above results indicated that the selective-ecotoxicological effects of ligand design and receptor modification were both improved. Additionally, the combined effects of the ACE-09 derivative on plant absorption and metabolic mutants improved by 31.1% and 31.4% in scenario 2, respectively, while the effect on microbial degradation mutant improved by 14.9%, indicating that there was a synergistic effect between ligand design and receptor modification. Finally, based on the interaction between the ACE-09 derivative and mutants, the optimal environmental factors that improved the selectivity of their ecotoxicological effects were determined. For example, alternate application of nitrogen and phosphorus fertilizers effectively reduced the oxidative damage to plants caused by NNI residues. The novel ligand-receptor joint modification method, combined with the regulation of environmental factors under multiple scenarios, can biochemically address the ecotoxicological concern and highlight the harmful effects of pesticides on the environment and non-target organisms.
Mostrar más [+] Menos [-]Phenotypic responses to oil pollution in a poeciliid fish
2021
Santi, Francesco | Vella, Emily | Jeffress, Katherine | Deacon, Amy | Riesch, Rüdiger
Pollution damages ecosystems around the globe and some forms of pollution, like oil pollution, can be either man-made or derived from natural sources. Despite the pervasiveness of oil pollution, certain organisms are able to colonise polluted or toxic environments, yet we only have a limited understanding of how they are affected by it. Here, we analysed phenotypic responses to oil pollution in guppies (Poecilia reticulata) living in oil-polluted habitats across southern Trinidad. We analysed body-shape and life-history traits for 352 individuals from 11 independent populations, six living in oil-polluted environments (including the naturally oil-polluted Pitch Lake), and five stemming from non-polluted habitats. Based on theory of, and previous studies on, responses to environmental stressors, we predicted guppies from oil-polluted waters to have larger heads and shallower bodies, to be smaller, to invest more into reproduction, and to produce more but smaller offspring compared to guppies from non-polluted habitats. Contrary to most of our predictions, we uncovered strong population-specific variation regardless of the presence of oil pollution. Moreover, guppies from oil-polluted habitats were characterised by increased body size; rounder, deeper bodies with increased head size; and increased offspring size, when compared to their counterparts from non-polluted sites. This suggests that guppies in oil-polluted environments are not only subject to the direct negative effects of oil pollution, but might gain some (indirect) benefits from other concomitant environmental factors, such as reduced predation and reduced parasite load. Our results extend our knowledge of organismal responses to oil pollution and highlight the importance of anthropogenic pollution as a source of environmental variation. They also emphasise the understudied ecological heterogeneity of extreme environments.
Mostrar más [+] Menos [-]Impact of atrazine concentration on bioavailability and apparent isotope fractionation in Gram-negative Rhizobium sp. CX-Z
2020
Chen, Songsong | Zhang, Kai | Jha, Rohit Kumar | Ma, Limin
Compound-specific stable isotope analysis of micropollutants has become an established method for the qualitative and quantitative assessment of biodegradation in the field. However, many of environmental factors may have an influence on the observed isotope fractionation. Herein, we investigate the impact of substrate concentration on the observed enrichment factor derived from Rayleigh plot of batch laboratory experiments conducted to measure the atrazine carbon isotope fractionation of Rhizobium sp. CX-Z subjected to the different initial concentration level of atrazine. The Rayleigh plot (changes in bulk concentration vs. isotopic composition) derived from batch experiments shown divergence from the linear relation towards the end of degradation, confirming bioavailability of atrazine changed along with the decay of substrate concentration, consequently, influenced the isotope fractionation and lowered the observed enrichment factor. When microbial degradation is coupled to a mass transfer step limiting the bioavailability of substrate, the observed enrichment factor displays a dependence on initial atrazine concentration. Observed enrichment factors (ε) (absolute value) derived from the low concentration (i.e. 9.5 μM) are below 3.5‰ to the value of −5.4‰ determined at high bioavailability (membrane-free cells). The observed enrichment factor depended significantly on the atrazine concentration, indicating the concentration level and the bioavailability of a substrate in realistic environments should be considered during the assessment of microbial degradation or in situ bioremediation based on compound-specific stable isotope analysis (CSIA) method.
Mostrar más [+] Menos [-]Human chemical signature: Investigation on the influence of human presence and selected activities on concentrations of airborne constituents
2020
Mitova, Maya I. | Cluse, Camille | Goujon-Ginglinger, Catherine G. | Kleinhans, Samuel | Rotach, Michel | Tharin, Manuel
There is growing evidence that the very presence of human beings in an enclosed environment can impact air quality by affecting the concentrations of certain airborne volatile organic compounds (VOC). This influence increases considerably when humans perform different activities, such as using toiletries, or simply eating and drinking. To understand the influence of these parameters on the concentrations of selected airborne constituents, a study was performed under simulated residential conditions in an environmentally-controlled exposure room. The human subjects either simply remained for a certain time in the exposure room, or performed pre-defined activities in the room (drinking wine, doing sport, using toiletries, and preparation of a meal containing melted cheese). The impact of each activity was assessed separately using our analytical platform and exposure room under controlled environmental conditions. The results showed that prolonged human presence leads to increased levels of isoprene, TVOCs, formaldehyde and, to a lesser extent, acetaldehyde. These outcomes were further supported by results of meta-analyses of data acquired during several internal studies performed over two years. Furthermore, it was seen that the indoor concentrations of several of the selected constituents rose when the recreational and daily living activities were performed. Indeed, an increase in acetaldehyde was observed for all tested conditions, and these higher indoor levels were especially notable during wine-drinking as well as cheese meal preparation. Formaldehyde increased during the sessions involving sport, using toiletries, and cheese meal preparation. Like acetaldehyde, acrolein, crotonaldehyde and particulate matter levels rose significantly during the cheese meal preparation session. In conclusion, prolonged human residence indoors and some recreational and daily living activities caused substantial emissions of several airborne pollutants under ventilation typical for residential environments.
Mostrar más [+] Menos [-]The influence of wetting-drying alternation on methylmercury degradation in Guangzhou soil
2020
Xie, Mengying | Zhang, Caixiang | Liao, Xiaoping | Huang, Changsheng
In one of our previous studies, the mechanisms of radical-initiated methylmercury (MeHg) degradation in soil with coexisting Fe and Cu have been reported. In this work, various environmental factors, including water table fluctuation, pH and major ions, are discussed to clarify the behavior of MeHg in subsurface environments. Soil column experiments were set up to simulate the degradation of MeHg in the soil with an iron-bearing mineral (annite), which has often undergone repeating wetting-drying cycles, resulting from the local climate. The results indicate that wetting-drying alternation can initiate MeHg degradation in the soil with the annite mineral. Additionally, the majority of the major ions (K⁺, Na⁺, Mg²⁺, Fe³⁺, Cl⁻, SO₄²⁻, NO₃⁻) in the interstitial soil had little effect in the degradation of MeHg with the exception of Cu, which improved the degradation depending on the pH. At acidic pHs Cu increased the production of hydroxyl radical while at more alkaline pHs there was oxidation to Cu(III). The products including Hg(II) and Hg(0) of MeHg degradation were also identified in this work. This study reveals that the geochemical cycle of MeHg is closely linked to local climate and pedosphere processes.
Mostrar más [+] Menos [-]Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China
2020
Liu, Xuan | Wang, Hua | Zhao, Huimin
The increasing prevalence and spread of antibiotic resistance genes (ARGs) in intensive aquaculture environments are of great concern to food safety and public health. However, the level of ARGs and their potential propagation factors in an industrial recirculating aquaculture system (RAS) have not previously been comprehensive explored. In this study, the levels of 14 different ARG markers and 2 kinds of mobile genetic elements (MGEs) were investigated in a RAS (including water, fish, feces, pellet feed meal, and biofilm samples) located northern China. qnrA, qnrB, qnrS, qepA, aac(6′)-Ib, and floR were dominant ARGs, which average concentration levels were presented at 4.51–7.74 copies/L and 5.36–13.07 copies/g, respectively, suggesting that ARGs were prevalent in RAS with no recorded history of antibiotic use. Elevated level of ARGs was found in water of RAS even after the final UV treatment compared with its influent. In RAS, Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes were the predominant phyla. Notably, elevated levels of potential opportunistic pathogens were observed along with abundant ARGs suggesting an increasing risk of capturing ARGs and MGEs for human pathogens. This study has revealed for the first time that reared fish, their feces, pellet feed meal as the introduction sources and the selection roles of treatment units co-driven the ARG profile, and the co-selection of water environmental factors and their consequently induced bacterial community shifts formed by their influence are the determining drivers for the ARG propagation in RAS.
Mostrar más [+] Menos [-]Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior
2020
Zheng, Qian | Li, Jun | Wang, Yan | Lin, Tian | Xu, Yue | Zhong, Guangcai | Bing, Haijian | Luo, Chunling | Zhang, Gan
We investigated the levels and distributions of organochlorine pesticides (OCPs) in 159 background soil samples collected from 30 forested mountain sites across China. The sum of DDT was the most abundant OCP, with the concentrations of 0.197–207 ng/g and 0.033–122 ng/g in the O-horizon and A-horizon, respectively. High concentrations of OCPs usually occur near agricultural regions or high consumption areas. The spatial distribution was mainly influenced by the emission sources and soil total organic contents (TOC). The chiral compounds were generally nonracemic in the soils and showed preferential degradation of (−) o,p′- dichlorodiphenyltrichloroethane, (+) trans-chlordane, and (−) cis-chlordane in both the O- and A-horizons. The enantiomeric fraction (EF) distributions of chiral OCPs displayed no differences across the forest sites in the O-horizon or the A-horizon. Comparing the deviation of EFs from racemic (DEVrac = absolute value of 0.500 - EF) with environmental parameters, we found that DEVrac of cis-chlordane demonstrated a strong positive correlation with TOC (p < 0.05) and the C/N ratio (p < 0.01). This relationship suggests that these factors could affect the microbial activity and significantly impact the extent of enantioselective degradation of chiral compounds in the soils. Fresh and historical applications of DDT and historical chlordane and endosulfan uses may be prominent sources of OCP accumulation in Chinese forest soils.
Mostrar más [+] Menos [-]Fate of atrazine and its relationship with environmental factors in distinctly different lake sediments associated with hydrophytes
2020
Qu, Mengjie | Liu, Guanglong | Zhao, Jianwei | Li, Huidong | Liu, Wei | Yan, Yupeng | Feng, Xionghan | Zhu, Duanwei
Atrazine contamination is of great concern due to its widespread occurrence in shallow lakes. Here, the distribution and degradation of atrazine in acidic and alkaline lake systems were investigated. Meanwhile, the bacterial communities in different sediments and the effects of environmental factors on atrazine-degrading bacteria were evaluated. In the lake systems without plants, atrazine levels in sediment interstitial water reached peak concentrations on the 4th d. More than 90% of atrazine was then degraded in all sediment interstitial water by day 30. Meanwhile, the degradation rate of atrazine in alkaline sediments was faster than that in acidic sediments. Values of hydroxylated metabolites in the acidic lake sediments tended to be greater. Moreover, the amounts of Proteobacteria, Actinobacteria, Firmicute, Nitrospinae, Aminicenantes, Ignavibacteriae and Saccharibacteria in acidic Tangxunhu Lake sediments were significantly different from alkaline Honghu Lake sediments, while the amounts of Cyanobacteria and Saccharibacteria in sediments treated with atrazine were significantly greater than those in sediments without atrazine (P < 0.05). Notably, pH was the most relevant environmental factor in the quantitative variation of atrazine-degrading bacteria, including in Clostridium-sensu-stricto, Pseudomonas, Comamonas and Rhodobacter. The Mantel test results indicated that the degradation of atrazine in different sediments was mainly affected by the sediment physicochemical properties rather than by the addition of atrazine and the cultivation of hydrophytes.
Mostrar más [+] Menos [-]