Refinar búsqueda
Resultados 1-10 de 86
Tissue distribution and bioaccumulation of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in edible fishes from Taihu Lake, China
2021
Chen, Meng | Zhu, Lingyan | Wang, Qiang | Shan, Guoqiang
Tissue distribution of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in several kinds of edible fishes collected from Meiliang bay of Taihu Lake, China were investigated and the related human health risks were assessed. Perfluorooctanesulfonate (PFOS), perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer phosphate diester (6:2 diPAP) were the most abundant legacy perfluoroalkyl acid (PFAA), PFOS related precursor (PreFOS), and the emerging PFASs in all fish tissues, respectively. Similar to the legacy PFAAs, 6:2 diPAP and 6:6 perfluorophosphinate (6:6 PFPiA) had the highest levels in the fish liver, whereas the highest level of PFOSA was in kidney, which might be due to its intensive transformation in fish liver. The concentrations of PFASs were generally positively correlated with the trophic levels. The profiles of PFASs were significantly different among bitterling, crucian and other fish, which might be related to their different metabolic capacities. Bioaccumulation factors (BAFs) of PreFOSs, 6:2 diPAP, and 6:6 PFPiA were lower than those of PFAAs with the same number of perfluorinated carbons. The calculated hazard ratios (HR) of PFOS (Range: 0.0100–0.655) and perfluorooctanoic acid (PFOA) (<0.00200) in all fish muscles were less than 1.0. However, the HR of the ∑PFASs in crucian muscle was 1.04, which implied that frequent consumption of crucian collected from Meiliang Bay might pose potential risks to human health.
Mostrar más [+] Menos [-]Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic
2020
Han, Xu | Hao, Yanfen | Li, Yingming | Yang, Ruiqiang | Wang, Pu | Zhang, Gaoxin | Zhang, Qinghua | Jiang, Guibin
The levels of eight organophosphate esters (OPEs) were analyzed in air and soil samples collected at Ny-Ålesund and London Island, Svalbard during the Chinese Scientific Research Expedition to the Arctic during 2014–2015. The concentrations of total OPEs (∑OPEs) ranged from 357 pg/m³ to 852 pg/m³ in the air and from 1.33 ng/g to 17.5 ng/g dry weight (dw) in the soils. Non-Cl OPEs accounted for 56 ± 13% and 62 ± 16% of ∑OPEs for the air and soil, respectively. Tris(2-chloroethyl) phosphate (TCEP) was the dominant compound in the air, with an average concentration of 180 ± 122 pg/m³. Triphenyl phosphate, tri(1-chloro-2-propyl) phosphate, and TCEP were the most abundant OPEs in the soils, with mean values of 1.77, 2.13, and 1.02 ng/g dw, respectively. Compared with the levels of polybrominated diphenyl ethers found in Arctic regions in previous studies, OPEs showed significantly higher concentrations, thereby indicating the large production and wide usage of OPEs globally. In addition, the fugacity fraction results indicated that net deposition from air to soil was dominated in the area. Overall, the occurrence and distribution of OPEs in the air and soils in the Arctic region indicated that OPEs can undergo long-range atmospheric transport and accumulate in remote regions.
Mostrar más [+] Menos [-]Missed atmospheric organic phosphorus emitted by terrestrial plants, part 2: Experiment of volatile phosphorus
2020
Li, Wei | Li, Bengang | Tao, Shu | Ciais, Philippe | Piao, Shilong | Shen, Guofeng | Peng, Shushi | Wang, Rong | Gasser, Thomas | Balkanski, Yves | Li, Laurent | Fu, Bo | Yin, Tianya | Li, Xinyue | An, Jie | Han, Yunman
The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH₃) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. ³¹P nuclear magnetic resonance tests (³¹P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1–2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.
Mostrar más [+] Menos [-]Legacy and emerging semi-volatile organic compounds in sentinel fish from an arctic formerly used defense site in Alaska
2020
Zheng, Guomao | Miller, Pamela | von Hippel, Frank A. | Buck, C Loren | Carpenter, David O. | Salamova, Amina
The Arctic is subject to long-range atmospheric deposition of globally-distilled semi-volatile organic compounds (SVOCs) that bioaccumulate and biomagnify in lipid-rich food webs. In addition, locally contaminated sites may also contribute SVOCs to the arctic environment. Specifically, Alaska has hundreds of formerly used defense (FUD) sites, many of which are co-located with Alaska Native villages in remote parts of the state. The purpose of this study was to investigate the extent of SVOC contamination on Alaska’s St. Lawrence Island through the analysis of sentinel fish, the ninespine stickleback (Pungitius pungitius), collected from Troutman Lake located within the watershed of an FUD site and adjacent to the Yupik community of Gambell. We measured the concentrations of legacy and emerging SVOCs in 303 fish samples (81 composites), including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs) and their diester metabolites, and per- and poly-fluoroalkyl substances (PFAS). PBDEs and PCBs were the most abundant SVOC groups found in stickleback with ΣPBDE and ΣPCB median concentrations of 25.8 and 10.9 ng/g ww, respectively, followed by PFAS (median ΣPFAS 7.22 ng/g ww). ΣOPE and ΣOPE metabolite concentrations were lower with median concentrations of 4.97 and 1.18 ng/g ww, respectively. Chemical patterns and distributions based on correlations and comparison with SVOC concentrations in stickleback from other parts of the island suggest strong local sources of PCBs, PBDEs, and PFAS on St. Lawrence Island.
Mostrar más [+] Menos [-]Organophosphate ester flame retardants and plasticizers in a Chinese population: Significance of hydroxylated metabolites and implication for human exposure
2020
Li, Mengqi | Yao, Yiming | Wang, Yu | Bastiaensen, Michiel | Covaci, Adrian | Sun, Hongwen
Organophosphate esters (OPEs) are widely used as flame retardants, plasticizers and defoamers and their exposure are likely associated with a number of adverse effects in humans. In this study, tris(chloroethyl) phosphate and thirteen OPE metabolites including six hydroxylated OPEs (HO-OPEs) were analyzed in 46 urine samples, collected from 8 provinces located across different regions in China. 1-Hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and 2-hydroxyethyl bis(2-butoxyethyl) phosphate (BBOEHEP) were major metabolites of their parent compounds with detection frequencies of 54.3%–89.1%, which were all higher than their corresponding OPE diesters (2.2%–6.5%). The urine-based estimated daily intake (EDI) of OPEs ranged from 0.06 ng/kg·bw for tris(2-butoxyethyl) phosphate (TBOEP) to 273 ng/kg·bw for 2-ethylhexyl phenyl phosphate. Analyzed with concentrations in paired dust samples, dust exposure to OPEs and their diesters may explain 0.28%–23.8% of the urine-based EDI of OPEs and the contribution of dust TBOEP was the highest. Although direct exposure to OPE diesters in dust showed a minor contribution, their intake via food and drinking water may account for a larger portion of urinary OPE metabolites. Overall, the hazard quotients of four OPEs indicated no immediate exposure risk for the investigated Chinese residents but the cumulative and long-term chronic effects involving exposure to other OPEs and OPE diesters are worth further concerns.
Mostrar más [+] Menos [-]A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone
2019
Hu, Yuan-Jie | Bao, Lian-Jun | Huang, Chun-Li | Li, Shao-Meng | Zeng, E. Y. (Eddy Y.)
Inhalation exposure to flame retardants used as additives to minimize fire risk and plasticizers is ubiquitous in human daily activities, but has not been adequately assessed. To address this research gap, the present study conducted an assessment of human health risk for four age groups through inhalation exposure to size fractionated particle-bound and gaseous halogenated flame retardants (polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs)) and organophosphate esters (OPEs) at indoor and outdoor environments (school, office, and residence) in three districts of a megacity (Guangzhou, China). Results demonstrated that OPEs were the dominant components among all targets. Indoor daily intakes of PBDEs and OPEs were 13–16 times greater than outdoor levels for all age groups. Gaseous OPEs contributed significantly greater than particle-bound compounds to daily intakes of all target compounds. Based on the different life scenarios, hazard quotient (HQ) and incremental life cancer risk (ILCR) from adults exposure to PBDEs and OPEs in indoor and outdoor settings were the greatest, followed by adolescents, children, and seniors. The estimated HQ and ILCR for all age groups both indoors and outdoors were lower than the safe level (HQ = 1 and ILCR = 10−6), indicating that the potential health risk for local residents in Guangzhou via inhalation exposure to atmospheric halogenated flame retardants and OPEs was low.
Mostrar más [+] Menos [-]Accumulation of flame retardants in paired eggs and plasma of bald eagles
2018
Guo, Jiehong | Simon, Kendall | Romanak, Kevin | Bowerman, William | Venier, Marta
In this study, we measured the concentrations of 58 flame retardants (and related compounds) in bald eagle (Haliaeetus leucocephalus) egg and plasma samples from the Michigan. These analytes include polybrominated diphenyl ethers (PBDEs), novel flame retardants (nFRs), Dechlorane-related compounds (Decs), and organophosphate esters (OPEs). A total of 24 paired eaglet plasma and egg samples were collected from inland (IN, N = 13) and the Great Lakes (GL, N = 11) breeding areas from 2000 to 2012. PBDEs were the most abundant chemical group with a geometric mean of 181 ng/g wet weight (ww) in egg and 5.31 ng/g ww in plasma. Decs were barely found in plasma samples, but they were frequently found in eggs (geometric mean 23.5 ng/g ww). OPE levels were comparable to those of PBDEs in the plasma but lower than those of PBDEs in eggs. Dec and PBDE concentrations were significantly higher in GL than in IN (p < 0.05). The ratio of egg to plasma concentrations (lipid normalized) varied with chemicals and correlated with the chemical's octanol-water partition coefficient. The lipid normalized bald eagle egg and plasma concentrations from Lake Superior and Huron were one to three orders of magnitude higher than concentrations measured in composite lake trout (Salvelinus namaycush) from the same lake, implying that they biomagnify in the environment.
Mostrar más [+] Menos [-]Urinary metabolites of organophosphate esters in children in South China: Concentrations, profiles and estimated daily intake
2018
Chen, Yi | Fang, Jianzhang | Ren, Lu | Fan, Ruifang | Zhang, Jianqing | Liu, Guihua | Zhou, Li | Chen, Dingyan | Yu, Yingxin | Lu, Shaoyou
Organophosphate esters (OPEs) are widely used in household products as flame retardants or plasticizers and have become ubiquitous pollutants in environmental media. However, little is known about OPE metabolites in humans, especially in children. In this study, eight OPE metabolites were measured in 411 urine samples collected from 6 to 14-year-old children in South China. Bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP) and diphenyl phosphate (DPHP) were the dominant OPE metabolites, and their median concentrations were 1.04, 0.15 and 0.28 μg/L, respectively. The levels of urinary OPE metabolites in the present study were much lower than those in participants from other countries, with the exception of BCEP, suggesting widespread exposure to tris(2-chlorethyl) phosphate (TCEP, the parent chemical of BCEP) in South China. No significant difference in the concentrations of any of the OPE metabolites was observed between males and females (p > .05). Significant negative correlations were observed between age and BCEP, BCIPP, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), di-o-cresyl phosphate (DoCP) and di-p-cresyl phosphate (DpCP) (DCP), or DPHP (p < .05). Pearson correlation coefficients between urinary OPE metabolites indicated multiple sources and OPE exposure pathways in children. The estimated daily intake suggested that children in South China have a relatively high exposure level to TCEP. To the best of our knowledge, this is the first study to report the urinary levels of OPE metabolites in Chinese children.
Mostrar más [+] Menos [-]Residuals of organophosphate esters in foodstuffs and implication for human exposure
2018
Ding, Jinjian | Deng, Tongqing | Xu, Mengmeng | Wang, Shen | Yang, Fangxing
Foodstuffs may be contaminated by organophosphate esters (OPEs) and become an important source of human exposure since OPEs are ubiquitous in the environment. In the present study, 10 OPEs were analyzed in various food matrices collected from a city in Eastern China including chicken, pork, fishes, vegetables, tofu, eggs, milk and cereals. The concentrations of Σ₁₀OPEs ranged from 1.1 to 9.6 ng g⁻¹ fresh weight (fw) in the foodstuffs. Cereals had the highest residual level of total OPEs with a mean value of 5.7 ng g⁻¹ fw. Tris(2-ethylhexyl) phosphate was detected in all foodstuff samples and showed the highest median residual concentration of 1.3 ng g⁻¹ fw among the OPE analogs. The daily dietary intake of OPEs was calculated as 3.6 and 2.4 μg d⁻¹ for adults and children. Cereals were identified as the major contributor to the total OPEs among different types of foodstuffs. Preliminary exposure assessment revealed that the current non-cancer health risks of OPEs via dietary intake were in the range of 10⁻⁵-10⁻³, indicating low risk levels. Moreover, the hazard index of OPEs indicated that the risk for children (3 × 10⁻³) was higher than adults (2 × 10⁻³).
Mostrar más [+] Menos [-]Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio)
2017
Wang, Guowei | Shi, Huanhuan | Du, Zhongkun | Chen, Hanyan | Peng, Jianbiao | Gao, Shixiang
Although organophosphate esters (OPEs) have been detected with growing frequency in water ecosystems, the underlying accumulation mechanisms of these compounds in fish are still unknown. Here, we investigated the tissue-specific accumulation and depuration of seven OPEs in adult zebrafish at three levels (0, 1/150 LC50 (environmentally relevant level), and 1/30 LC50 per OPE congener) in laboratory after 19 days exposure and 3 days depuration. The bioaccumulation of OPEs varied among tissues. Muscle contained the lowest level of OPEs and liver had the highest level of two (TPP and TCEP) of the seven OPEs at steady state. The high levels and slow depuration rates of TDCIPP, TPHP, and TCP observed in roe indicated that the accumulated OPEs were potentially stored in roe and transferred to the next generation. After examination of the major metabolites (organophosphate diesters) in selected tissues, a physiologically based toxicokinetic (PBTK) model used in fish was adopted to explore the key factors affecting the bioaccumulation of OPEs in zebrafish. Biotransformation of OPEs with polychlorinated alkyl moieties (i.e. TDCIPP) and aryl moieties (i.e. TPHP and TCP) has more significant impacts on the accumulation than those of OPEs with alkyl or short chain chlorinated alkyl moieties. Furthermore, the partition process between tissues and blood was also investigated, and was demonstrated to be the dominant process for OPEs accumulation in zebrafish. This study provides critical information on the bioaccumulation, tissue distribution, and metabolization of OPEs in relation with OPE structures in fish, as well as the underlying bioaccumulation mechanisms/pathways of OPEs in aquatic life.
Mostrar más [+] Menos [-]