Refinar búsqueda
Resultados 1-10 de 10
Protozoan predation in soil slurries compromises determination of contaminant mineralization potential
2012
Badawi, Nora | Johnsen, Anders R. | Brandt, Kristian K. | Sørensen, Jan | Aamand, Jens
Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, ¹⁴C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period.
Mostrar más [+] Menos [-]Field and laboratory simulations of storm water pulses: Behavioural avoidance by marine epifauna
2008
Roberts, D.A. | Johnston, E.L. | Muller, S. | Poore, A.G.B.
Epifaunal communities associated with macroalgae were exposed to storm water pulses using a custom made irrigation system. Treatments included Millipore® freshwater, freshwater spiked with trace metals and seawater controls to allow for the relative importance of freshwater inundation, trace metals and increased flow to be determined. Experimental pulses created conditions similar to those that occur following real storm water events. Brief storm water pulses reduced the abundance of amphipods and gastropods. Freshwater was the causative agent as there were no additional effects of trace metals on the assemblages. Laboratory assays indicated that neither direct nor latent mortality was likely following experimental pulses and that epifauna readily avoid storm water. Indirect effects upon epifauna through salinity-induced changes to algal habitats were not found in field recolonisation experiments. Results demonstrate the importance of examining the effects of pulsed contaminants under realistic exposure conditions and the need to consider ecologically relevant endpoints. Brief storm water pulses trigger avoidance response in mobile epifauna due to the inundation of freshwater.
Mostrar más [+] Menos [-]Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea
2010
Naile, Jonathan E. | Khim, Jong Seong | Wang, Tieyu | Chen, Chunli | Luo, Wei | Kwon, Bong-Oh | Park, Jinsoon | Ko, Chʻŏr-hwan | Jones, Paul D. | Lü, Yonglong | Giesy, John P.
Soil, sediment, water, and biota collected from the western coast of Korea were analyzed to determine occurrence and sources of perfluorinated compounds (PFCs). PFCs were significantly concentrations of PFCs were measured in some water and biological samples, while concentrations of PFCs in soils and sediments were relatively low. The most widely detected compound was found to be perfluorooctanesulfonate (PFOS), with a maximum concentration in water of 450 ng/L and in fish of 612 ng/g, dw. PFOS concentrations in water and biota were both less than those thought to cause toxicity. However, in both cases concentrations were within a factor of 10 of the toxicity threshold concentration. Concentrations of PFCs were significantly greater downstream than those upstream on the same river, suggesting point sources. Overall, the detection of PFCs at relatively great concentrations in various environmental matrixes from this region of Korea suggests that further studies characterizing PFCs and their potential risk to both humans and wildlife are needed.
Mostrar más [+] Menos [-]Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations
2010
Bradac, Philippe | Wagner, Bettina | Kistler, David | Traber, Jacqueline | Behra, Renata | Sigg, Laura
Accumulation of cadmium in periphyton was investigated under field conditions while Cd concentration and speciation were dynamically varying in a small stream during rain events. Speciation in water was determined in situ by diffusion gradient in thin-films (DGT) and by modeling of complexation with fulvic acids. During the rain events, dissolved Cd concentrations increased from 0.17 nM to 0.27–0.36 nM, and 70–97% were DGT-labile. Cd content in periphyton closely followed Cd concentrations in water, despite higher concentrations of Zn and Mn, and may be controlled by either free or DGT-labile Cd concentrations. Decrease of Cd content in periphyton after the rain events was slower than the decrease of Cd concentration in water. Concentrations of Zn, Mn, Cu, Pb and Fe in periphyton also followed the dynamic variations of metal concentrations in water. Repeated exposure of periphyton to elevated dissolved Cd may lead to Cd accumulation. Cadmium accumulation in periphyton was examined in a small stream during rain events in relation to Cd speciation.
Mostrar más [+] Menos [-]Trophic transfer of Cd from natural periphyton to the grazing mayfly Centroptilum triangulifer in a life cycle test
2010
Xie, Lingtian | Funk, David H. | Buchwalter, David B.
In streams, periphyton biofilms are important sinks for trace metals such as cadmium and are primary food sources of many invertebrate consumers. To study Cd trophic transfer, we produced differentially contaminated diets by exposing natural periphyton to environmentally relevant dissolved Cd ranging from 0 to 10 μg L−1 for 6–7 days using a radiotracer approach. On average, periphyton grown during three different seasons bioconcentrated Cd similarly – approximately 1315 (±442) -fold above dissolved concentrations. However, mayfly larvae (Centroptilum triangulifer) raised on these differentially contaminated diets (first instar through adulthood) had significantly higher trophic transfer factors from periphyton grown in Aug and Nov 2008 (4.30 ± 1.55) than from periphyton grown in Jan 2009 (0.85 ± 0.21). This Cd bioaccumulation difference is only partially explained by apparent food quality and subsequent growth differences. Taken together, these results suggest that primary producers at the base of food webs drive metal bioaccumulation by invertebrate grazers. Periphyton is a major source of Cd bioaccumulation in a grazing mayfly.
Mostrar más [+] Menos [-]Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels
2010
Karlsson, Jenny | Ytreberg, Erik | Eklund, Britta
Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7‰ artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests. Leachate from a biocide-free anti-fouling paint for leisure boat use was more toxic than leachates from ship paints.
Mostrar más [+] Menos [-]Biomonitors and the assessment of ecological impacts: Distribution of herbivorous epifauna in contaminated macroalgal beds
2008
Roberts, David A. | Johnston, Emma L. | Poore, Alistair G.B.
We determined metal contents of co-occurring algae Padina crassa and Sargassum sp. in Port Jackson (Australia), and relationships between metal levels and the abundance of epifaunal amphipods. Copper, lead and zinc concentrations were amongst the highest yet recorded in these algae. Copper, manganese and lead concentrations were far greater in P. crassa than Sargassum sp., possibly due to the low growth of P. crassa in proximity to contaminated sediments. However, in manipulative experiments the proximity of algae to sediments did not explain these differences. The abundance of herbivorous amphipods correlated negatively with the copper content of P. crassa, but not with the lower concentrations in Sargassum sp. The greater contamination of P. crassa led to patchy distributions of metals in algal beds and recolonisation experiments showed Sargassum sp. acts as a refuge from contaminants for epifauna. The contamination of macroalgae may pose threats to epifauna in harbours around the world. The accumulation of metals by macroalgae may pose ecological threats to herbivorous epifauna in ports and harbours worldwide.
Mostrar más [+] Menos [-]Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks
2013
Buse, Helen Y. | Lu, Jingrang | Struewing, Ian T. | Ashbolt, Nicholas J.
The goal of this study was to characterize microbial eukaryotes over a 12-month period to provide insight into the occurrence of potential bacterial predators and hosts in premise plumbing. Nearly 6,300 partial 18S rRNA gene sequences from 24 hot (36.9-39.0 °C) and cold (6.8-29.1 °C) drinking water samples were analyzed and classified into major eukaryotic groups. Each major group, consisting of free-living amoebae (FLA)/protozoa, algae, copepods, dinoflagellates, fungi, nematodes, and unique uncultured eukaryotic sequences, showed limited diversity dominated by a few distinct populations, which may be characteristic of oligotrophic environments. Changes in the relative abundance of predators such as nematodes, copepods, and FLA appear to be related to temperature and seasonal changes in water quality. Sequences nearly identical to FLA such as Hartmannella vermiformis, Echinamoeba thermarmum, Pseudoparamoeba pagei, Protacanthamoeba bohemica, Platyamoeba sp., and Vannella sp. were obtained. In addition to FLA, various copepods, rotifers, and nematodes have been reported to internalize viral and bacterial pathogens within drinking water systems thus potentially serving as transport hosts; implications of which are discussed further. Increasing the knowledge of eukaryotic occurrence and their relationship with potential pathogens should aid in assessing microbial risk associated with various eukaryotic organisms in drinking water.
Mostrar más [+] Menos [-]Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review
2011
Fernández-Luqueño, F. | Valenzuela-Encinas, C. | Marsch, R. | Martínez-Suárez, C. | Vázquez-Núñez, E. | Dendooven, L.
BACKGROUND, AIM, AND SCOPE: Although highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges. DISCUSSION AND CONCLUSIONS: Microorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism–microorganism, microorganism–plant, microorganism–soil, and microorganisms–PAHs. PERSPECTIVES: Elucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remediate PAHs-contaminated soil.
Mostrar más [+] Menos [-]An illustrated key to the British freshwater ciliated protozoa commonly found in activated sludge
1969
Curds, Colin Robert