Refinar búsqueda
Resultados 1-10 de 76
Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea
2020
Zheng, Wenkui | Wan, Yongshan | Li, Yuncong | Liu, Zhiguang | Chen, Jianqiu | Zhou, Hongyin | Gao, Yongxiang | Chen, Baocheng | Zhang, Min
Evaluation of the effectiveness of best management practices for reducing nitrate leaching in agricultural systems requires detailed water and nitrogen (N) budgets. A 3-year field experiment using 15 auto-weighing lysimeters was set up to quantify nitrate leaching, crop evapotranspiration (ET), and N and water use efficiencies within an intensive wheat-maize rotation system in the Northern China Plain. The lysimeter consists mainly of the following: (1) high-resolution weighing cells; (2) ceramic solution samplers for soil solutions collection; and (3) circular stainless steel leaching trays for collecting seepage water. Two N fertilizer types were applied at two rates (150 and 225 kg N hm⁻² for each crop) with no-N applied as the control. The N fertilizer types were monotypic un-coated urea and a blend product with controlled-release urea (CRU) and un-coated urea. The results indicate that when compared with un-coated urea at the same application rate, the blend product greatly improved water and N use efficiencies with significant increase in yields and crop ET as well as reduction of nitrate accumulation and leaching in the soil profile (p < 0.05). This was mostly because the blend product consistently supplied N to meet crop demands over the entire growth season. The study implied that effective best management practices to control nitrate leaching should be based on technically sound fertilization and irrigation schemes in terms of timing, rate, and fertilizer type to suit site specific conditions.
Mostrar más [+] Menos [-]Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis
2017
Lv, Tao | Carvalho, Pedro N. | Casas, Mònica Escolà | Bollmann, Ulla E. | Arias, Carlos A. | Brix, Hans | Bester, Kai
Phytoremediation of realistic environmental concentrations (10 μg L−1) of the chiral pesticides tebuconazole and imazalil by Phragmites australis was investigated. This study focussed on removal dynamics, enantioselective mechanisms and transformation products (TPs) in both hydroponic growth solutions and plant tissues. For the first time, we documented uptake, translocation and metabolisation of these pesticides inside wetland plants, using enantioselective analysis. Tebuconazole and imazalil removal efficiencies from water reached 96.1% and 99.8%, respectively, by the end of the experiment (day 24). Removal from the solutions could be described by first-order removal kinetics with removal rate constants of 0.14 d−1 for tebuconazole and 0.31 d−1 for imazalil. Removal of the pesticides from the hydroponic solution, plant uptake, within plant translocation and degradation occurred simultaneously. Tebuconazole and imazalil concentrations inside Phragmites peaked at day 10 and 5d, respectively, and decreased thereafter. TPs of tebuconazole i.e., (5-(4-Chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol and 5-(3-((1H-1,2,4-Triazol-1-yl)methyl)-3-hydroxy-4,4-dimethylpentyl)-2-chlorophenol) were quantified in solution, while the imazalil TPs (α-(2,4-Dichlorophenyl)-1H-imidazole-1-ethanol and 3-[1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethoxy]-1,2-propanediol) were quantified in both solution and plant tissue. Pesticide uptake by Phragmites was positively correlated with evapotranspiration. Pesticide removal from the hydroponic solution was not enantioselective. However, tebuconazole was degraded enantioselectively both in the roots and shoots. Imazalil translocation and degradation inside Phragmites were also enantioselective: R-imazalil translocated faster than S-imazalil.
Mostrar más [+] Menos [-]Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand
2010
Nunn, A.J. | Cieslik, S. | Metzger, U. | Wieser, G. | Matyssek, R.
Stomatal O3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O3 flux was 33% of the total O3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O3 flux and reflected stomatal regulation rather than O3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O3 risk assessment in forests from O3 exposure towards flux-based concepts.
Mostrar más [+] Menos [-]Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination
2010
Weyens, Nele | Croes, Sarah | Dupae, Joke | Newman, Lee | Lelie, Daniel van der | Carleer, Robert | Vangronsveld, Jaco
The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation.
Mostrar más [+] Menos [-]Microplastics in plant-soil ecosystems: A meta-analysis
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
Mostrar más [+] Menos [-]Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration
2019
Ryu, Jeongeun | Kim, Jeong Jae | Byeon, Hyeokjun | Go, Taesik | Lee, Sang Joon
Reduction of particulate matter (PM) has emerged as one of the most significant challenges in public health and environment protection worldwide. To address PM-related problems and effectively remove fine particulate matter (PM2.5), environmentalists proposed tree planting and afforestation as eco-friendly strategies. However, the PM removal effect of plants and its primary mechanism remains uncertain. In this study, we experimentally investigated the PM removal performance of five plant species in a closed chamber and the effects of relative humidity (RH) caused by plant evapotranspiration, as a governing parameter. On the basis of the PM removal test for various plant species, we selected Epipremnum aureum (Scindapsus) as a representative plant to identify the PM removal efficiency depending on evapotranspiration and particle type. Results showed that Scindapsus yielded a high PM removal efficiency for smoke type PM2.5 under active transpiration. We examined the correlation of PM removal and relative humidity (RH) and evaluated the increased effect of RH on PM2.5 removal by using a plant-inspired in vitro model. Based on the present results, the increase of RH due to evapotranspiration is crucial to the reduction of PM2.5 using plants.
Mostrar más [+] Menos [-]Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany
2017
Fu, Jin | Gasche, R. | Wang, Na | Lü, Haiyan | Butterbach-Bahl, Klaus | Kiese, Ralf
In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (−440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha−1 year−1 (range: 0.5–6.0 kg N ha−1 year−1) to 4.8 kg N ha−1 year−1 (range: 0.9–12.9 kg N ha−1 year−1). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8–6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive.
Mostrar más [+] Menos [-]Source and enrichment mechanism of fluoride in groundwater of the Hotan Oasis within the Tarim Basin, Northwestern China
2022
Huang, Liwen | Sun, Ziyong | Zhou, Aiguo | Bi, Junbo | Liu, Yunde
In arid inland irrigated areas, the role of human activities on fluoride enrichment in groundwater is not fully understood. There is an extremely arid climate, high-intensity irrigation, and severe soil salinization in the Hotan Oasis within the Tarim Basin, Northwestern China. In this study, hydrogeochemistry and environmental isotope methods were combined to explore the distribution characteristics and controlling processes of fluoride enrichment in groundwater. The F⁻ concentration in groundwater had a range of 1.12–9.4 mg/L. F⁻ concentrations of all the groundwater samples were higher than 1.0 mg/L (Chinese Standards for Drinking Water Quality), and about 89% were higher than 1.5 mg/L (WHO Guidelines for Drinking Water Quality). High fluoride groundwater was mainly distributed downstream of the river and in the middle of the interfluvial zone. Vertically, the fluoride concentration was higher when the sampling depth was less than 15 m. There was a significant positive correlation between F⁻ concentration and salinity in groundwater. F⁻ in groundwater was mainly derived from river water fluoride, which could be imported to groundwater with infiltration of rivers and irrigation canals as well as irrigation return flow. Anthropogenic inputs may be partly responsible for fluoride enrichment in groundwater. Fluoride accumulated in the vadose zone by strong evapotranspiration and then leached into groundwater with irrigation return flow was the main mechanism of F⁻ enrichment in groundwater in the study area. This work is a clear example of how human activities together with natural processes can affect the chemical quality of groundwater, which is essential to safeguard the sustainable management of water and soil resources inland arid oasis areas.
Mostrar más [+] Menos [-]Climate change impacts the subsurface transport of atrazine and estrone originating from agricultural production activities
2020
Barrios, Renys E. | Akbariyeh, Simin | Liu, Chuyang | Gani, Khalid Muzamil | Kovalchuk, Margarita T. | Li, Xu | Li, Yusong | Snow, Dan | Tang, Zhenghong | Gates, John | Bartelt-Hunt, Shannon L.
Climate change will impact soil properties such as soil moisture, organic carbon and temperature and changes in these properties will influence the sorption, biodegradation and leaching of trace organic contaminants to groundwater. In this study, we conducted a modeling case study to evaluate atrazine and estrone transport in the subsurface under current and future climate conditions at a field site in central Nebraska. According to the modeling results, in the future, enhanced evapotranspiration and increased average air temperature may cause drier soil conditions, which consequently reduces the biodegradation of atrazine and estrone in the water phase. On the other hand, greater transpiration rates lead to greater root solute uptake which may decrease the concentration of atrazine and estrone in the soil profile. Another consequence of future climate is that the infiltration and leaching rates for both atrazine and estrone may be lower under future climate scenarios. Reduced infiltration of trace organic compounds may indicate that lower trace organic concentrations in groundwater may occur under future climate scenarios.
Mostrar más [+] Menos [-]Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems
2016
Sicard, Pierre | Augustaitis, Algirdas | Belyazid, Salim | Calfapietra, Carlo | De Marco, Alessandra | Fenn, Mark | Bytnerowicz, Andrzej | Grulke, Nancy | He, Shang | Matyssek, Rainer | Serengil, Yusuf | Wieser, Gerhard | Paoletti, Elena
Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere–biosphere–pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose–response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services.
Mostrar más [+] Menos [-]