Refinar búsqueda
Resultados 1-10 de 156
Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria
2023
Ogunniyi, Adebayo Isaiah; Omotayo, Abiodun Olusola; Olagunju, Kehinde Oluseyi; Motunrayo, Olyeyemi; Awotide, Bola Amoke; Mavrotas, George; Oladapo, Adeyemi
PR | IFPRI3; ISI; CRP3.2; 4 Transforming Agricultural and Rural Economies | Development Strategies and Governance (DSG); Transformation Strategies | CGIAR Research Program on Maize (MAIZE)
Mostrar más [+] Menos [-]Establishment of a multiplex RT-PCR assay for identification of atmospheric virus contamination in pig farms
2019
Li, Han | Wei, Xiaobing | Zhang, Xiulin | Xu, Hao | Zhao, Xuesong | Zhou, Shaofeng | Huang, Shaobin | Liu, Xingyou
Spread of pathogens in pig farms not only causes transfection of diseases to other pigs or even farmers working in the farms, but also induces pollution to the living atmospheric environment of the residents around the farm. Therefore, it is necessary to establish a rapid and simple monitoring method. In this study, full genome sequences of common viruses were analyzed in pig farms, in combination with the design of primers, optimization of the reaction parameters, so as to establish a multiplex RT-PCR assay for the identification of classical swine fever virus (CSFV), Japanese encephalitis virus (JEV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus Type 2 (PCV-2), porcine pseudorabies virus (PRV) and porcine parvovirus virus (PPV), which are common in pig farms. This method has a minimal detectable concentration of 10⁻³ ng/μL, which is highly specific. Furthermore, multiplex RT-PCR was applied to examine air samples from 4 pig farms located in different cities of China. The results were in line with those obtained by single PCR. Therefore, this study can be expected to provide essential technique support for the early warning mechanism as well as disease prevention and control system against the major viruses.
Mostrar más [+] Menos [-]Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China
2018
Hao, Zhuo | Zhang, Xinyu | Gao, Yang | Xu, Zhiwei | Yang, Fengting | Wen, Xuefa | Wang, Yueming
By identifying the main sources of nitrate (NO3−) can obtain useful information to support the management of NO3− pollution, particularly in subtropical catchments with shallow drinking water wells. This study used water chemistry and dual stable isotopes δ15N and δ18O methods to assess seasonal and spatial variations of NO3− in precipitation, surface water, and groundwater in an agricultural and forest subtropical catchment in Jiangxi Province, China. The maximum concentrations of nitrate-nitrogen (NO3−-N) and ammonium-nitrogen (NH4+-N) were 10.4 and 10.8 mg L−1in samples collected from 221 rainfall events from 2011 to 2013. About 4.4% and 12.3% NH4+-N concentrations of surface water and groundwater exceeded the thresholds of 1.0 and 0.2 mg L−1. The NO3−-N concentrations in surface water were closely correlated with NH4+-N concentrations in surface water and groundwater (r = −0.71 and r = −0.71, P < 0.05). The concentrations of NH4+-N and NO3−-N were significantly higher in a fishery pond and nearby drinking wells than in other monitoring points. Annual exports of NO3−-N and NH4+-N were 4.06 × 104 and 8.14 × 103 kg yr−1, respectively and NO3−-N is the main form of N loss. The δ15N values ranged from 0‰ to 20‰ in surface water and groundwater, and the δ18O values ranged from 0‰ to 15‰ and 1‰–13‰, respectively. Dual stable isotope natural abundance distribution and water chemistry [NO3−]/[Cl−] molar ratio information suggested that manure and sewage and soil N were the main sources of NO3− in surface water and manure and sewage in groundwater in summer and winter. In spring, water occurred denitrification and ammonium fertilizer, manure and sewage were the main sources of NO3− in surface water and groundwater which sampling points were closer residential area and fish ponds than paddy field and local farmers used more Manure. Manure applications should be reasonable around drinking water wells to protect the drinking water quality.
Mostrar más [+] Menos [-]The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health
2017
Liu, Hong-cui | Chu, Tian-yi | Chen, Li-li | Gui, Wen-jun | Zhu, Guo-nian
The health risk of triadimefon (TF) to cardiovascular system of human is still unclear, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems) who are at a greater risk. Therefore, firstly we explored the toxic effects and possible mechanism of cardiovascular toxicity induced by TF using zebrafish model. Zebrafish at stage of 48 h post fertilization (hpf) exposed to TF for 24 h exhibited morphological malformations which were further confirmed by histopathologic examination, including pericardial edema, circulation abnormalities, serious venous thrombosis and increased distance between the sinus venosus (SV) and bulbus arteriosus (BA) regions of the heart. In addition to morphological changes, TF induced functional deficits in the heart of zebrafish, including bradycardia and a significant reduced cardiac output that became more serious at higher concentrations. To better understand the possible molecular mechanisms underlying cardiovascular toxicity in zebrafish, we investigated the transcriptional level of genes related to calcium signaling pathway and cardiac muscle contraction. Q-PCR (quantitative real-time polymerase chain reaction) results demonstrated that the expression level of genes related to ATPase (atp2a1l, atp1b2b, atp1a3b), calcium channel (cacna1ab, cacna1da) and cardiac troponin C (tnnc1a) were significantly decreased after TF exposure. For the first time, the present study revealed that TF exposure had observable morphological and functional negative impacts on cardiovascular system of zebrafish. Mechanistically, this toxicity might result from the pressure of down-regulation of genes associated with calcium signaling pathway and cardiac muscle contraction following TF exposure. These findings generated here can provide information for better pesticide poisoning treatments, occupational disease prevention, and providing theoretical foundation for risk management measures.
Mostrar más [+] Menos [-]Impact of irrigation with high arsenic burdened groundwater on the soil–plant system: Results from a case study in the Inner Mongolia, China
2012
Neidhardt, H. | Norra, S. | Tang, X. | Guo, H. | Stüben, D.
Consequences of irrigation by arsenic (As) enriched groundwater were assigned in the Hetao Plain, part of Chinas’ Inner Mongolia Autonomous Region. Examinations followed the As flow path from groundwater to soil and finally plants. A sunflower and a maize field were systematically sampled, each irrigated since three years with saline well water, characterized by elevated As concentrations (154 and 238μgL⁻¹). The annual As input per m² was estimated as 120 and 186mg, respectively. Compared to the geogenic background, As concentrations increased toward the surface with observed enrichments in topsoil being relatively moderate (up to 21.1mgkg⁻¹). Arsenic concentrations in plant parts decreased from roots toward leaves, stems and seeds. It is shown that the bioavailability of As is influenced by a complex interplay of partly counteracting processes. To prevent As enrichment and soil salinization, local farmers were recommended to switch to a less problematic water source.
Mostrar más [+] Menos [-]CO₂ emissions from farm inputs “Case study of wheat production in Canterbury, New Zealand”
2012
Safa, Majeed | Samarasinghe, Sandhya
This review paper concentrates on carbon dioxide emissions, discussing its agricultural sources and the possibilities for minimizing emissions from these sources in wheat production in Canterbury, New Zealand. This study was conducted over 35,300 ha of irrigated and dryland wheat fields in Canterbury. Total CO₂ emissions were 1032 kg CO₂/ha in wheat production. Around 52% of the total CO₂ emissions were released from fertilizer use and around 20% were released from fuel used in wheat production. Nitrogen fertilizers were responsible for 48% (499 kg CO₂/ha) of CO₂ emissions. The link between nitrogen consumption, CO₂ emissions and crop production showed that reducing the CO₂ emissions would decrease crop production and net financial benefits to farmers.
Mostrar más [+] Menos [-]Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis
2011
Wang, Yan | Xu, Hao | Wu, Xu | Zhu, Yimei | Gu, Baojing | Niu, Xiaoyin | Liu, Anqin | Peng, Changhui | Ge, Ying | Chang, Jie
Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha⁻¹ yr⁻¹ for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall.
Mostrar más [+] Menos [-]Pesticide pollution in agricultural areas of Northern Vietnam: Case study in Hoang Liet and Minh Dai communes
2011
Hoai, Pham Manh | Sebesvari, Zita | Minh, Tu Binh | Viet, Pham Hung | Renaud, Fabrice G.
Soils and agricultural products from the Red River basin in Northern Vietnam were reported to be contaminated by agrichemicals. To assess potential exposure of local farmers and consumers to these contaminants, pesticide use and management practices of local farmers were surveyed and residue concentrations were determined for recently used as well as for banned pesticides in water, soil, vegetables, and fish samples in two communes of Northern Vietnam. DDTs, HCHs, and Drin compounds still persist at relatively high concentrations in soil and occur in vegetable and fish samples. Recently used pesticides, such as fenobucarb, trichlorfon, cyfluthrin, and cypermethrin were detected in vegetable and fish samples. Thresholds for acceptable daily intake levels (ADI) were frequently reached in the analyzed food products pointing to the fact that current pesticide management practices do not only result in a pollution of the environment but also pose threats to human health.
Mostrar más [+] Menos [-]High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China
2020
Yang, Wenliang | Que, Huali | Wang, Shuwei | Zhu, Anning | Zhang, Yujun | He, Ying | Xin, Xiuli | Zhang, Xianfeng | Ding, Shijie
Ammonia emission is one of the dominant pathways of nitrogen fertilizer loss from rice fields in China. It is difficult to measure ammonia emissions by high-frequency sampling with the chamber methods widely used in China, which is of great significance for investigating the environmental effects on the ammonia emissions. The chamber methods also can not accurately determine the ammonia emissions. In this study, the backward Lagrangian stochastic dispersion model, with ammonia concentrations continuously measured by the open-path tunable diode laser absorption spectroscopy technique, was used to determine ammonia emissions from a rice field after fertilizer application at excessive (270 kg N ha⁻¹) and appropriate (210 kg N ha⁻¹) rates in the Taihu Lake Region of China. High temporal resolution measurements of ammonia emissions revealed that high intraday fluctuations of ammonia emissions were significantly affected by the meteorological conditions. Multiple regression analysis showed a dominant solar radiation dependence of intraday ammonia emission cycles, especially during the rice panicle formation stage. The NH₄⁺-N concentrations of the surface water of the rice field were found to be the decisive factor that influenced interday dynamics of ammonia emissions. Accurate quantifications of ammonia emissions indicated that the total ammonia losses under appropriate nitrogen application rate were 27.4 kg N ha⁻¹ during the rice tillering stage and 11.2 kg N ha⁻¹ during the panicle formation stage, which were 29.4% and 17.0% less than those under traditional excessive nitrogen application rate used by the local farmers, respectively. The ammonia loss proportions during the rice panicle formation stage were significantly lower than those of the tillering stage, which might be due to different nitrogen application rates and environmental effects during the two stages. This study indicated that the open-path tunable diode laser absorption spectroscopy technique could facilitate the investigation of high temporal resolution dynamic of ammonia emissions from farmland and the environmental influence on the ammonia emissions.
Mostrar más [+] Menos [-]The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling
2020
Chen, Hongping | Wang, Peng | Gu, Yi | Kretzschmar, Ruben | Kopittke, Peter M. | Zhao, Fang-Jie
Rice is a major dietary source of the toxic trace metal Cd. Large variation in Cd concentration in rice grain was documented by global and regional surveys, with this variation difficult to predict from soil tests. Even within individual fields, a large spatial variation is often observed but the factors controlling this within-field spatial variation are still poorly understood. In the present study, we used field- and laboratory-based experiments to investigate the effects of a gentle slope gradient within paddy fields (a common farmers’ practice to facilitate water flow from the inlet to the outlet) on Cd availability and grain Cd concentrations in unlimed and limed soils. In our field experiments, a gentle slope resulted in large spatial variations in soil redox potential (Eh) and pH upon soil drainage during rice grain filling. As a result of these variations in Eh and pH, there was a 6- to 7-fold spatial within-field variation in grain Cd concentrations, which were the highest in the irrigation inlet area associated with higher Eh values and the lowest in the outlet area with lower Eh values. Our results highlight that soil Eh, and more importantly, field-moist soil pH during grain filling determine grain Cd concentration and accordingly, incorporating measurements of soil redox status (or water content) and pH of field moist soils (rather than air-dried soils) during grain filling may improve the prediction of grain Cd concentrations. Delaying drainage during grain filling or increasing soil pH by liming is effective in reducing grain Cd accumulation.
Mostrar más [+] Menos [-]