Refinar búsqueda
Resultados 1-10 de 32
Analysis of environmental chemical mixtures and nonalcoholic fatty liver disease: NHANES 1999–2014
2022
Li, Wei | Xiao, Haitao | Wu, Hong | Pan, Cheng | Deng, Ke | Xu, Xuewen | Zhang, Yange
We aimed to investigate the associations between chemical mixtures and the risk of nonalcoholic fatty liver disease (NAFLD) in this study. A total of 127 exposure analytes within 13 chemical mixture groups were included in the current analysis. Associations between chemical mixture exposure and prevalence of NAFLD were examined using weighted quantile sum (WQS) regressions. NAFLD was diagnosed by hepatic steatosis index (HSI) and US fatty liver index (USFLI). In USFLI-NAFLD cohort, chemical mixtures positively associated with NAFLD development included urinary metals (OR: 1.10, 95% CI: 1.04–1.16), urinary perchlorate, nitrate and thiocyanate (OR: 1.06, 95% CI: 1.02–1.11), urinary pesticides (OR: 1.24, 95% CI: 1.09–1.40), urinary phthalates (OR: 1.18, 95% CI: 1.09–1.28), urinary polyaromatic hydrocarbons (PAHs) (OR: 1.08, 95% CI: 1.03–1.14), and urinary pyrethroids, herbicides, and organophosphate pesticides metabolites (OR: 1.32, 95% CI: 1.15–1.51). All of the above mixtures were also statistically significant in WQS regressions in the HSI-NAFLD cohort. Besides, some chemical mixtures were only significant in HSI-NAFLD cohort including urinary arsenics (OR: 1.07, 95% CI: 1.02–1.12), urinary phenols (OR: 1.10, 95% CI: 1.02–1.19) and blood polychlorinated dibenzo-p-dioxins (OR: 1.10, 95% CI: 1.03–1.17). Three types of chemical mixtures only showed significant associations in the healthy lifestyle score (HLS) of 3–4 subgroup, including urinary perchlorate, nitrate and thiocyanate, urinary PAHs and blood polychlorinated dibenzo-p-dioxins. In conclusion, the exposure of specific types of chemical mixtures were associated with elevated NAFLD risk, and the effects of some chemical mixtures on NAFLD development exhibited differences in participants with different lifestyles.
Mostrar más [+] Menos [-]4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro
2021
Sun, Zhendong | Cao, Huiming | Liu, Qian S. | Liang, Yong | Fiedler, H. (Heidelore) | Zhang, Jianqing | Zhou, Qunfang | Jiang, Guibin
Finding the potential environmental obesogens is crucial to explain the prevalence of obesity and the related pathologies. Increasing evidence has showed that many chemicals with endocrine disrupting effects can disturb lipid metabolism. Whether 4-hexylphenol (4-HP), a widely-used surfactant and a potential endocrine disrupting chemical (EDC), is associated to influence adipogenesis and hepatic lipid accumulation remained to be elucidated. In this study, both the 3T3-L1 differentiation model and oleic acid (OA)-treated HepG2 cells were used to investigate the effects of 4-HP on lipid metabolism, and the underlying estrogen receptor (ER)-involved mechanism was explored using MVLN assay, molecular docking simulation and the antagonist test. The results based on lipid droplet staining and triglyceride accumulation assay showed that 4-HP treatment promoted the adipogenic differentiation of 3T3-L1 cells and increased hepatic cellular OA accumulation in exposure concentration-dependent manners. The study on the elaborated transcription networks indicated that 4-HP activated peroxisome proliferator-activated receptor γ (PPARγ) as well as the subsequent adipogenic gene program in 3T3-L1 cells. This chemical also induced the increase of OA uptake and decreases of de novo lipogenesis and fatty acid oxidation in HepG2 cells. The agonistic activity of 4-HP in triggering ER-mediated pathway was shown to correlate with its perturbation in lipid metabolism, as evidenced by the enhanced development of mature lipid-laden adipocytes and suppression of excessive hepatic lipid accumulation upon its co-treatment with ER antagonist. Altogether, these findings provide new insights into the potential health impacts of 4-HP exposure as it may relate to obesity and nonalcoholic fatty liver disease.
Mostrar más [+] Menos [-]Exposure to 2,3,3′,4,4′,5-hexachlorobiphenyl promotes nonalcoholic fatty liver disease development in C57BL/6 mice
2020
Shan, Qiuli | Chen, Ningning | Liu, Wei | Qu, Fan | Chen, Anhui
Previous in vitro studies have indicated that 2,3,3′,4,4′,5-hexachlorobiphenyl (PCB 156) may be a new contributor to metabolic disruption and may further cause the occurrence of nonalcoholic fatty liver disease (NAFLD). However, no study has clarified the specific contributions of PCB 156 to NAFLD progression by constructing an in vivo model. Herein, we evaluated the effects of PCB 156 treatment (55 mg/kg, i.p.) on the livers of C57BL/6 mice fed a control diet (CD) or a high-fat diet (HFD). The results showed that PCB 156 administration increased intra-abdominal fat mass, hepatic lipid levels and dyslipidemia in the CD-fed group and aggravated NAFLD in HFD-fed group. By using transcriptomics studies and biological methods, we found that the genes expression involved in lipid metabolism pathways, such as lipogenesis, lipid accumulation and lipid β-oxidation, was greatly altered in liver tissues exposed to PCB 156. In addition, the cytochrome P450 pathway, peroxisome proliferator-activated receptors (PPARs) and the glutathione metabolism pathway were significantly activated following exposure to PCB 156. Furthermore, PCB 156 exposure increased serum transaminase levels and lipid peroxidation, and the redox-related genes were significantly dysregulated in liver tissue. In conclusion, our data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.
Mostrar más [+] Menos [-]Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish
2020
Qin, Jingyu | Ru, Shaoguo | Wang, Weiwei | Hao, Liping | Ru, Yiran | Wang, Jun | Zhang, Xiaona
Environmental chemical exposures have been implicated as risk factors for the development of non-alcoholic fatty liver (NAFLD). Bisphenol S (BPS), widely used in multitudinous consumer products, could disrupt lipid metabolism in the liver. This study aimed at examining the hypothesis that long-term exposure to BPS promotes the development of liver fibrosis and inflammation by means of the application of a semi-static exposure experiment that exposed zebrafish to 1, 10, and 100 μg/L BPS from 3 h post fertilization to 120 day post fertilization. Results showed that the 120-d BPS exposure elevated plasma aspartate aminotransferase and alanine aminotransferase activities, increased triacylglycerol (TAG) and total cholesterol levels in male liver, and even induced hepatic apoptosis and fibrosis. Hepatic lipid accumulation observed in the 30-d BPS-exposed zebrafish was recovered after a 90-d depuration phase, thereby indicating that long-term BPS exposure promotes the progression of simple steatosis to non-alcoholic steatohepatitis. Furthermore, BPS exposure for 120-d promoted the synthesis of TAG and lipotoxic free fatty acids by elevating the transcription of srebp1, acc, fasn, and elovl6, induced endoplasmic reticulum (ER) stress with increasing expression levels of unfolded protein response (UPR) genes (perk, hsp5, atf4a, and ddit3), and then stimulated the expression of two key autophagy genes (atg3 and lc3) and inflammatory genes (il1b and tnfα). It is indicated that BPS can induce the development of steatohepatitis via the activation of the PERK-ATF4a pathway of the UPR. Data gathered suggest that environmental pollutants-induced ER stress with the activation of UPR can potentially trigger the NAFLD development in males. Overall, our study provided new sights into understanding of the adverse health effects of metabolism disrupting chemicals.
Mostrar más [+] Menos [-]Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park
2019
Michán, Carmen | Chicano-Gálvez, Eduardo | Fuentes-Almagro, Carlos A. | Alhama, José
Natural environments are receiving an increasing number of contaminants. Therefore, the evaluation and identification of early responses to pollution in these complex habitats is an urgent and challenging task. Doñana National Park (DNP, SW Spain) has been widely used as a model area for environmental studies because, despite its strictly protected core, it is surrounded by numerous threat sources from agricultural, mining and industrial activities. Since many pollutants often induce oxidative stress, redox proteomics was used to detect redox-based variations within the proteome of Mus spretus mice captured in DNP and the surrounding areas. Functional analysis showed that most differentially oxidized proteins are involved in the maintenance of homeostasis, by eliciting mechanisms to respond to toxic substances and oxidative stress, such as antioxidant and biotransformation processes, immune and inflammatory responses, and blood coagulation. Furthermore, changes in the overall protein abundance were also analysed by label-free quantitative proteomics. The upregulation of phase I and II biotransformation enzymes in mice from Lucio del Palacio may be an alert for organic pollution in the area located at the heart of DNP. Metabolic processes involved in protein turnover (proteolysis, amino acid catabolism, new protein biosynthesis and folding) were activated in response to oxidative damage to these biomolecules. Consequently, aerobic respiratory metabolism increased to address the greater ATP demands. Alterations of cholesterol metabolism that could cause hepatic steatosis were also detected. The proteomic detection of globally altered metabolic and physiological processes offers a complete view of the main biological changes caused by environmental pollution in complex habitats.
Mostrar más [+] Menos [-]Effects of chronic glyphosate exposure to pregnant mice on hepatic lipid metabolism in offspring
2019
Ren, Xin | Dai, Pengyuan | Perveen, Aneela | Tang, Qian | Zhao, Liangyu | Qingyangwanxi, | Li, Yansen | Li, Chunmei
Glyphosate is the active ingredient in Roundup, one of the most popular herbicides in the world, and its toxicity has caused increasing concerns. The present study aims to investigate the toxic effects of prenatal exposure to pure glyphosate or Roundup on lipid metabolism in offspring. During gestational days (GDs), ICR mice (from Institute of Cancer Research) were given distilled water, 0.5% glyphosate solution (w/v, 0.5 g/100 ml) or 0.5%-glyphosate Roundup solution orally. The livers and serum samples of the offspring were collected on gestational day 19 (GD19), postnatal day 7 (PND7) and PND21. The results showed a significant decrease in the body weight and obvious hepatic steatosis with excessive lipid droplet formation in offspring. Moreover, the concentrations of lipids such as triglycerides (TGs), total cholesterol (T-CHO), and low-density lipoprotein cholesterols (LDL-C) increased to a significant extent in both the serum and livers. Furthermore, there were significant differences in the expression levels of the genes SREBP1C, SREBP2, Fasn, Hmgcr, Hmgcs and PPARα, which are related to lipid biosynthesis or catabolism in the liver. These results demonstrate that chronic prenatal exposure to glyphosate can result in lipid metabolism disruption in the offspring of mice, as glyphosate exerts a negative influence on the expression of lipogenesis genes.
Mostrar más [+] Menos [-]Cadmium, lead, and mercury mixtures interact with non-alcoholic fatty liver diseases
2022
Nguyen, Hai Duc | Kim, Min-Sun
There is a scarcity of studies on the interactions between heavy metals and non-alcoholic fatty liver disease (NAFLD). Using a variety of statistical approaches, we investigated the impact of three common heavy metals on liver enzymes and NAFLD markers in a Korean adult population. We observed that cadmium, mercury, and lead all demonstrated positive correlations with liver enzymes and NAFLD indices. Our findings were mostly robust in secondary analysis, which included three novel mixture modeling approaches (WQS, qgcomp, and BKMR) as well as in silico investigation of molecular mechanisms (genes, miRNAs, biological processes, pathways, and illnesses). The 16 genes interacted with a mixture of heavy metals, which was linked to the development of NAFLD. Co-expression was discovered in nearly half of the interactions between the 18 NAFLD-linked genes. Key molecular pathways implicated in the pathogenesis of NAFLD generated by the heavy metal combination include activated oxidative stress, altered lipid metabolism, and increased cytokines and inflammatory response. Heavy metal exposure levels were related to liver enzymes and NAFLD indices, and cutoff criteria were revealed. More studies are needed to validate our findings and gain knowledge about the effects of chronic combined heavy metal exposure on adult and child liver function and the likelihood of developing NAFLD. To reduce the occurrence of NAFLD, early preventative and regulatory actions (half-yearly screening of workers at high-risk facilities; water filtration; avoiding excessive amounts of seafood, etc.) should be taken.
Mostrar más [+] Menos [-]Bisphenol F induces nonalcoholic fatty liver disease-like changes: Involvement of lysosome disorder in lipid droplet deposition
2021
Wang, Jun | Yu, Pengfei | Xie, Xuexue | Wu, Linlin | Zhou, Manfei | Huan, Fei | Jiang, Lei | Gao, Rong
Epidemiological studies have demonstrated that the general population’s exposure to bisphenol A (BPA) substitutes is ubiquitous. Bisphenol F (BPF), one of the main BPA substitutes, is increasingly replacing BPA in plastics for food and beverage applications. Accumulating evidence suggests that BPA exposure is associated with nonalcoholic fatty liver disease (NAFLD)-like changes. However, the potential effects of BPF on lipid homeostasis remain poorly understood. In the present study, an epidemiological analysis with LC-MS-MS revealed that the BPF concentrations in the serum of NAFLD patients were significantly higher than those in a control group. Supporting this result, using Oil Red O, BODIPY 493/503, LipidTox Deep Red staining and gas chromatography-time-of-flight mass spectrometry (TOF-MS) assays, we found that BPF exposure induced NAFLD-like changes, with obvious lipid droplet deposition, triglyceride (TG) and fatty acids increase in mouse livers. Meanwhile, lipid droplet deposition and TG increase induced by BPF were also observed in HepG2 cells, accompanied by autophagic flux blockade, including autophagosome accumulation and the decreased degradation of SQSTM1/p62. Using adenoviruses dual-reporter plasmid RFP-GFP-LC3, RFP-GFP-PLIN2 transfection, AO staining, and EGFR degradation assays, we demonstrated that BPF treatment impaired lysosomal degradative capacity, since BPF treatment obviously impaired lysosomal acidification, manifested as decreased lysosomal hydrolase cathepsin L (CTSL) and mature cathepsin D (CTSD) in HepG2 and mouse liver issues. Additionally, v-ATPase D, a multi-subunit enzyme that mediates acidification of eukaryotic intracellular organelles, significantly decreased after BPF exposure in both the vitro and in vivo studies.This study ascertained a novel mechanism involving dysfunctional of lysosomal degradative capacity induced by BPF, which contributes to lipophagic disorders and causes lipid droplet deposition. This work provides evidence that lysosomes may be a target organelle where BPF exerts its potential toxicity; therefore, novel intervention strategies targeting lysosome are promising for BPF-induced NAFLD-like changes.
Mostrar más [+] Menos [-]Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis
2021
Usal, Marie | Veyrenc, Sylvie | Darracq--Ghitalla-Ciock, Marie | Regnault, Christophe | Sroda, Sophie | Fini, Jean-Baptiste | Canlet, Cécile | Tremblay-Franco, Marie | Raveton, Muriel | Reynaud, Stéphane
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L⁻¹) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2–BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2–BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
Mostrar más [+] Menos [-]Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice
2020
Feng, Dan | Zhang, Hongmin | Jiang, Xin | Zou, Jun | Li, Qingrong | Mai, Haiyan | Su, Dongfang | Ling, Wenhua | Feng, Xiang
Interactions between the intestine and the liver, the so-called ‘gut-liver axis’, play a crucial role in the onset of hepatic steatosis and non-alcoholic fatty liver disease. However, not much is known about the impact of environmental pollutants on the gut-liver axis and consequent hepatic steatosis. Bisphenol A (BPA), a widely used plasticiser, is an important environmental contaminant that affects gut microbiota. We hypothesised that BPA induces hepatic steatosis by promoting gut microbiota dysbiosis and activating the gut-liver axis. In this study, male CD-1 mice were fed with diet containing BPA (50 μg/kg body weight/day) for 24 weeks. Dietary exposure to BPA increased lipid contents and fat accumulation in the liver. Analysis of 16 S rRNA gene sequencing revealed that the diversity of gut microbiota reduced and the composition of gut microbiota was altered in the BPA-fed mice. Further, the abundance of Proteobacteria, a marker of dysbacteria, increased, whereas the abundance of Akkermansia, a gut microbe associated with increased gut barrier function and reduced inflammation, markedly decreased. Expression levels of intestinal tight junction proteins (zona occludens-1 and occludin) also decreased drastically, leading to increased intestinal permeability and elevated levels of endotoxins. Furthermore, BPA up-regulated the expression of Toll-like receptor 4 (TLR4) and phosphorylation of nuclear factor-kappa B (NF-κB) in the liver and increased the production of inflammatory cytokines, including interleukin-1β, interleukin-18, tumour necrosis factor-α, and interleukin-6. Take together, our work indicated that dietary intake of BPA induced hepatic steatosis, and this was closely related to dysbiosis of gut microbiota, elevated endotoxin levels, and increased liver inflammation through the TLR4/NF-κB pathway.
Mostrar más [+] Menos [-]