Refinar búsqueda
Resultados 1-10 de 437
The role of roots and mycorrhizas in C-sequestration under elevated CO2 (popface)
2002
Lukac, M. | Godbold, D.L. (University of Wales, Bangor (United Kingdom). SAFS)
The need to assess the role of terrestrial ecosystems in the global C cycle and the potential change of this role as the atmospheric concentration of CO2 increases attracted considerable scientific attention over the recent decade. In order to assess ecosystem responses as a whole and to evaluate the potential role of forests and tree communities as a carbon sinks, the below-ground response to increasing levels of CO2 must be addressed
Mostrar más [+] Menos [-]Response of subarctic tree seedlings to solar UV radiation
2002
Turunen, M. (University of Lapland, Rovaniemi (Finland). Arctic Centre) | Suttinen, M. L. | Derome, K. | Norokorpi, Y. | Lakkala, K.
The response of Betula pubescens Ehr., B. pendula Roth and two provenances of Pinus sylvestris L. to solar ultraviolet radiation were investigated in a UV exclusion field experiment during the 1997-1999 growing seasons in Finnish Lapland. The seed-grown seedlings were grown under UV-B exclusion and UV-B/UV-A exclusion as compared to control treatment and ambient plants. The only significant impacts of UV exclusion were found in P. sylvestris provenance Enontekio. Longer-term field studies are needed to detect the cumulative characteristics of the UV responses
Mostrar más [+] Menos [-]Discussion of the effects of N with and without acidified S on a sitka spruce ecosystem after 5 years treatment
2002
Sheppard, L.J. | (CEH Edinburgh Bush Estate, Edinburgh (United Kingdom)) | Crossley, A. | Ingleby, K. | Carfrae, J. | Harvey, F. | Kennedy, V.
Significant differences in the effects of N alone compared with NS Acid have been found with respect to eutrophication and acidification. N alone had no effect on the pleurocarpous mosses, whereas NS Acid caused their death within 2 years. Both treatments enhanced stem area increment and N alone also doubled fine root growth. By contrast NS Acid treatments increased litterfall in a a dose response fashion
Mostrar más [+] Menos [-]Sensitivity of adult beech and spruce trees of a mixed forest to chronic ozone exposure: findings from a free-air ozone fumigation experiment
2002
Nunn, A. J. (Technische Universitaet Munchen, Freising (Germany). Lehrstuhl fur Forstbotanik) | Reiter, I. M. | Heerdt, Ch. | Haberle, K. H. | Langerbartels, Ch. | Werner, H. | Sandermann, H. | Fabian, P. | Matyssek, R.
The study aims at assessing response patterns to chronic O3 exposure in adult forest trees, examining physiological and structural responses at the organ and whole-tree level for consistency by means of biochemical and ecophysiological analyses. Through comparison between the two O3 regimes, conclusions can be drawn about processes, which are at risk or already affected by ozone under the unchanged, prevailing stand conditions. Responses are related to the O3 influx into leaves as a measure of the physiologically effective O3 dose and cross-compared with the AOT 40 concept which is being validated on the two O3 fluxes and AOT40-related responses in biochemical, ecophysiological and structural tree parameters
Mostrar más [+] Menos [-]Assessment of ozone visible symptoms in the field - perspectives of quality control
2002
Bussotti, F. (University of Florence, Florence (Italy)) | Schaub, M. | Cozzi, A. | Krauchi, N. | Ferretti, M. | Novak, K. | Skelly, J. M.
Two field exercises for the assessment of foliar visible ozone symptoms were performed during the "2nd UN/ECE ICP-Forests Intercalibration Course on the Assessment of Ozone Injury on European tree Species" organised by the WSL in collaboration with the University of Florence, Linnaea ambiente, and the PSU. The exercises were conducted at the Lattecaldo OTC research facility in Southern Switzerland and on the Moggio Level II plot in Northern Italy from 22-24 August 2001. 48 participants represented 21 countries. There are given objectives and results and conclusions from both sites
Mostrar más [+] Menos [-]Reducing environmental risks of chlorpyrifos application in typical soils by adding appropriate exogenous organic matter: Evidence from a simulated paddy field experiment
2022
Shen, Dahang | Yu, Kaixiang | Hu, Jirong | Zhong, Jiayin | Shen, Guoqing | Ye, Qingfu | Wang, Wei
Chlorpyrifos (CPF), as an organophosphate insecticide extensively used in the modern agricultural system, has been gradually banned in many countries due to its reported health risks to organisms, including humans. This study used simulated paddy field experiments and carbon-14 tracing to explore the possibility of reducing environmental risks of chlorpyrifos application through appropriate agronomic practice. Results showed ¹⁴C-CPF concentration in rice plants planted in the red soil (RS) was significantly higher than that in black soil (BS) and fluvo-aquic soil (FS). The application of biochar and chicken manure in RS reduced ¹⁴C-CPF accumulation in rice plants, and the content of ¹⁴C-CPF in rice grains decreased by 25% and 50%, respectively. Adding biochar to all three soils reduced the migration of ¹⁴C-CPF, especially in FS with the highest risk of ¹⁴C-CPF migration. The addition of chicken manure in FS reduced the migration of ¹⁴C-CPF and the total residual amount of ¹⁴C-CPF in the soil. In addition, chicken manure treatment increased the formation of ¹⁴C-bound residues (BRs) in soils and changed the distribution ¹⁴C-BRs in humus. The results indicated that the degree of environmental risks associated with the CPF application varies with soil types and could be reduced by introducing suitable exogenous organic matter into different soils, which is of great significance for guiding the scientific application of chlorpyrifos in agronomic practices.
Mostrar más [+] Menos [-]Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions
2022
Wang, Qiuxia | Gao, Suduan | Wang, Dong | Cao, Aocheng
Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha⁻¹, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha⁻¹. All biochar treatments significantly reduced emissions by 38–100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99–100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.
Mostrar más [+] Menos [-]Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation
2021
Yin, Xiaolei | Peñuelas, Josep | Sardans, Jordi | Xu, Xuping | Chen, Youyang | Fang, Yunying | Wu, Liangquan | Singh, Bhupinder Pal | Tavakkoli, Ehsan | Wang, Weiqi
Biochar is often applied to paddy soils as a soil improver, as it retains nutrients and increases C sequestration; as such, it is a tool in the move towards C-neutral agriculture. Nitrogen (N) fertilizers have been excessively applied to rice paddies, particularly in small farms in China, because N is the major limiting factor for rice production. In paddy soils, dynamic changes in iron (Fe) continuously affect soil emissions of methane (CH₄) and carbon dioxide (CO₂); however, the links between Fe dynamics and greenhouse gas emissions, dissolved organic carbon (DOC), and rice yields following application of biochar remain unclear. The aims of this study were to examine the effects of two rates of nitrogen (N)-enriched biochar (4 and 8 t ha⁻¹ y⁻¹) on paddy soil C emissions and storage, rice yields, and Fe dynamics in subtropical early and late rice growing seasons. Field application of N-enriched biochar at 4 and 8 t ha⁻¹ increased C emissions in early and late rice, whereas application at 4 t ha⁻¹ significantly increased rice yields. The results of a culture experiment and a field experiment showed that the application of N-enriched biochar increased soil Fe²⁺concentration. There were positive correlations between Fe²⁺concentrations and soil CO₂, CH₄, and total C emissions, and with soil DOC concentrations. On the other way around, these correlations were negative for soil Fe³⁺concentrations. In the soil culture experiment, under the exclusion of plant growth, N-enriched biochar reduced cumulative soil emissions of CH₄ and CO₂. We conclude that moderate inputs of N-rich biochar (4 t ha⁻¹) increase rice crop yield and biomass, and soil DOC concentrations, while moderating soil cumulative C emissions, in part, by the impacts of biochar on soil Fe dynamics. We suggest that water management strategies, such as dry-wet cycles, should be employed in rice cultivation to increase Fe²⁺ oxidation for the inhibition of soil CH₄ and CO₂ production. Overall, we showed that application of 4 t ha⁻¹ of N-enriched biochar may represent a potential tool to improve sustainable food production and security, while minimizing negative environmental impacts.
Mostrar más [+] Menos [-]Do dissipation and transformation of γ-HCH and p,p’-DDT in soil respond to a proxy for climate change? Insights from a field study on the eastern Tibetan Plateau
2021
Ding, Yang | Li, Li | Wania, Frank | Huang, Huanfang | Zhang, Yuan | Peng, Bo | Chen, Yingjie | Qi, Shihua
While the influence of climate change on the fate of persistent organic pollutants (POPs) is becoming a topic of global concern, it has yet to be demonstrated how POPs and their transformation products in soil respond to a changing climate at the local scale. We conducted a year-long field experiment with spiked soils to investigate the impact of climate on the dissipation of γ-hexachlorocyclohexane (γ-HCH) and p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT) as well as the formation of their products. Four sites along an elevational gradient on the eastern Tibetan Plateau were selected to represent four scenarios ranging from a dry and cold to a warm and humid climate. Based on the measured concentrations of the two pesticides and their transformation products, we calculated the dissipation rates of γ-HCH and p,p’-DDT in soil using two biphasic kinetic models, and the formation rates of transformation products using a mid-point rectangular approximation method. The spiked γ-HCH generally showed the expected decrease in dissipation from soils with increasing altitudes, and therefore decreasing temperature and precipitation, whereas dissipation of p,p’-DDT was influenced more by photolysis and sequestration in soil. The formation rates of the primary products of γ-HCH (i.e. γ-HCH→PeCCH and γ-HCH→TeCCH) and p,p’-DDT (i.e. p,p’-DDT→p,p’-DDE and p,p’-DDT→p,p’-DDD) indicate that a warmer and wetter climate favors dechloroelimination (anaerobic biodegradation) over dehydrochlorination (aerobic biodegradation). The significantly longer dissipation half-lives of γ-HCH at the coldest site suggests that the fate of POPs in frozen regions (e.g. polar regions) needs more attention. Overall, the fate of more volatile chemicals (e.g. γ-HCH) might be more responsive to the climate change.
Mostrar más [+] Menos [-]Phenols in soils and agricultural products irrigated with reclaimed water
2021
Li, Yan | Liu, Honglu | Zhang, Lei | Lou, Chunhua | Wang, Yitong
The presence of phenols, such as nonylphenol (NP), bisphenol (BPA), and octylphenol (OP), in the environment have been receiving increased attention due to their potential risks to human health and environment. The use of reclaimed water for irrigation may be one of the sources of these phenols in the agricultural system. A field experiment was conducted to assess the effects of reclaimed water irrigation on phenol contamination of agricultural topsoil and products in the North China Plain between 2015 and 2016. Three irrigation treatments were applied to all crops: reclaimed water irrigation, groundwater irrigation and alternative irrigation with reclaimed water and groundwater (1:1, v/v). The results showed that the concentrations of NP, BPA, and OP in the topsoil were 0.02–0.54, 0.004–0.06, and ND–9.9 × 10⁻³ mg/kg, respectively; the corresponding values in agricultural products were 0.007–0.70, 0.004–0.24, and ND–1.08 mg/kg, respectively. The concentration of NP in the topsoil and agricultural products and that of BPA in the agricultural products were all less than the recommended limits. The yields of wheat, maize, vegetables were 4.35–7.08, 1.03–6.46, and 10.9–67.0 t/ha, respectively. The bioaccumulation factors (BCFs) of OP, NP, and BPA for cereals were 0.7–4.77, 0.16–4.59, and 1.3–23.9, respectively; the corresponding values in vegetables were 0.0–4.53 (except cucumber and eggplant), 0.38–12.6, and 0.57–24.3, respectively. No significant differences in phenol concentrations, BCFs, or yields of wheat and vegetables were observed among the three irrigation treatments. In conclusion, compared with groundwater irrigation, reclaimed water irrigation in this experiment did not significantly affect phenol concentrations in the topsoil and agricultural products as well as BCFs and yields of wheat and vegetables. However, because the quality of reclaimed water may vary across collected areas, additional experiments are warranted to analyze the effects of reclaimed water irrigation on the risk of phenol contamination.
Mostrar más [+] Menos [-]