Refinar búsqueda
Resultados 1-10 de 246
Trace element concentrations in the apex predator swordfish (Xiphias gladius) from a Mediterranean fishery and risk assessment for consumers
2017
Gobert, Sylvie | Pasqualini, Vanina | Dijoux, Jessica | Lejeune, Pierre | Durieux, Eric Dominique Henry | Marengo, Michel | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège | Stareso
peer reviewed | Swordfish (Xiphias gladius L., 1758) is an apex predator, highly migratory meso-pelagic fish widely distributed in the Atlantic Ocean and Mediterranean. As top predators, this fish may be the end reservoir of the bioaccumulation of trace elements in a food chain because they occupy higher trophic levels and are an important food source, causing them to be potentially hazardous to consume. This study aims to investigate the concentration of 18 trace elements of Swordfish, caught in the Mediterranean Sea and to discuss human exposure risks. The mean element levels in the fish muscles were clearly below the maximum allowable concentrations established by International food safety regulations. The data suggested that the risk is minor and acceptable for human health. The findings of this study amplify the scarce database on contaminants available, especially new data on “emerging elements”, for this species from the Mediterranean Sea. | Transpolmed Et Post Doc de Michel Marengo
Mostrar más [+] Menos [-]A study of trophic structure, physiological condition and mercury biomagnification in swordfish (Xiphias gladius): Evidence of unfavourable conditions for the swordfish population in the Western Mediterranean
2022
Biton-Porsmoguer, Sebastián | Bănaru, Daniela | Harmelin-Vivien, Mireille | Béarez, Philippe | Bouchoucha, Marc | Marco-Miralles, Françoise | Marquès, Montse | Lloret, Josep
International audience | Studies integrating trophic ecology, physiological condition and accumulation of heavy metals in top predators, such as swordfish, are needed to better understand the links between them and the risk to humans associated with consumption of these fish. This research focuses on the swordfish of the Catalan Sea and follows a multi method approach that considers their diet, their liver lipid content, and mercury accumulation in their bodies as well as in their prey. The aim is to highlight the links between trophic ecology, physiology (fish condition), and ecotoxicology. Results indicate that poor condition of swordfish based on size and the levels of lipid in the liver, and the high Hg levels accumulated to the trophic web (particularly from cephalopods) may indicate potential unfavourable feeding and reproduction conditions for swordfish in the NW Mediterranean and that this warrants further investigation.
Mostrar más [+] Menos [-]Huge quantities of microplastics are “hidden” in the sediment of China's largest urban lake—Tangxun Lake
2022
Shi, Mingming | Li, Rui | Xu, An | Su, Yewang | Hu, Tianpeng | Mao, Yao | Qi, Shihua | Xing, Xinli
Microplastics (MPs) pollution in Tangxun Lake, the largest urban lake in China, was investigated. The average MPs pollution in sediment (1.81 ± 1.75 × 10⁴ items kg⁻¹) is at a high level, while the MPs in lakeshore water (917.77 ± 742.17 items m⁻³) is in the middle to low level compared with existing studies, which is related to the government's protection. Fragments and fibers are the most common shapes in sediment and water, respectively. MPs size <1 mm dominates in the sediment, while the MPs in water has a larger size. The distribution of MPs in the inner lake shows that pellets tend to “hidden” in sediments. Suspected MPs are randomly selected for polymer detection by Micro-Raman microscopy. Polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET) are the most common polymer types in water, sediment and atmospheric deposition MPs samples. The input of wastewater, fishery and surrounding human activities are the main sources of MPs in sediment. Atmospheric deposition has a great impact on the distribution of MPs, while the contribution of surface runoff to lake MPs is not remarkable. In addition, MPs in sediments have exceeded the environmental carrying capacity. More attention should be focused on the sediment, where huge amounts of MPs are “hidden”.
Mostrar más [+] Menos [-]Multimedia distribution of polycyclic aromatic hydrocarbons in the Wang Lake Wetland, China
2022
Shi, Changhe | Qu, Chengkai | Sun, Wen | Zhou, Jingzhe | Zhang, Jiawei | Cao, Yu | Zhang, Yuan | Guo, J. (Jiahua) | Zhang, Jiaquan | Qi, Shihua
The Wang Lake Wetland is a highly valued area that is protected due to its high biodiversity. The wetland has a complicated hydrological regime and is subject to frequent human disturbance. We hypothesize that fluctuating hydrology and human activities have varied contributions to the temporal and spatial variations of polycyclic aromatic hydrocarbons (PAHs) in the wetland. Soil (SS), sediment (SD), and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM), samples were collected from eight locations during low- and high-flow periods to elucidate multimedia phase distribution and transport of PAHs. Following the onset of the rainy season, the concentration of SPM-associated PAHs increased significantly, while the DP PAHs remained stable. Individual PAH ratios showed that, although pyrogenic sources are common, petrogenic derived compounds are the main source of PAHs in the Wang Lake Wetland. During the high-flow period, the empirical values for logarithms of the organic carbon-normalized partition coefficients (log KOC) of individual PAH-congeners were lower than the corresponding field-observed log KOC values from the SPM-DP and SD-DP systems, reflecting the complexity in evaluating multi-phase PAH partitioning. During the high-flow period, temperature-driven changes may have changed the sediment from a sink to a source for some high molecular weight PAHs. It was determined that human activities governed the PAH loading in the low-flow period, whereas during high-flow conditions, increased rainfall, higher temperatures, and fishery activity are the main factors controlling PAH input to the Wang Lake Wetland.
Mostrar más [+] Menos [-]Microplastic bioaccumulation in estuary-caught fishery resource
2022
Li, Zhenling | Zhao, Min | He, Xiaokang | Lan, Xiaoping | Tian, Chenhao | Feng, Chenghong | Shen, Zhenyao
The environmental behavior of microplastics (MPs) in estuaries with saline and freshwater intersections is extremely complex. This increases the chance of MP ingestion by fishery resources, posing potentially tremendous health risks for humans. Herein, a total of 105 fishes from 14 different species, and 86 crustaceans (including shrimps and crabs) from five different species were sampled in the Yangtze River estuary and offshore, and MP bioaccumulation, accumulative organ, and the influencing factors were comprehensively studied. The results elucidated that MP accumulation in benthos was significantly higher than that in pelagic animals due to the lower acceptance threshold, assimilation efficiency and egestion rate for benthos. The MP content in crustaceans with the burrowing favoring the MP retention was significantly higher than that in fishes. MPs ingested by fish can accumulate in skin, gills and viscera rather than muscles. Most MPs accumulated in fishery resources were cellulose and polyethylene terephthalate characterized by black and gray fibrous and lengths ranging from 0.1 mm to 1 mm. The gill retention capacity of pelagic fish to smaller-size (<0.1 mm) MPs was pronouncedly stronger than that of benthic fish. It was more accurate to assess the ecological risk of MPs in terms of the maximum size of MPs accumulated in organisms. Compared with the offshore area, the incidence of MP uptake was higher in the estuary owing to anthropogenic impacts. This study helps understand the transfer of MPs in aquatic food webs and offers a foundation for assessing the risk of human exposure to MPs.
Mostrar más [+] Menos [-]Fuel consumption and air emissions in one of the world’s largest commercial fisheries
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Lamboy, Nathalie Bodin
The little information available on fuel consumption and emissions by high seas tuna fisheries indicates that the global tuna fleet may have consumed about 2.5 Mt of fuel in 2009, resulting in the production of about 9 Mt of CO₂-equivalent greenhouse gases (GHGs), i.e., about 4.5–5% of the global fishing fleet emissions. We developed a model of annual fuel consumption for the large-scale purse seiners operating in the western Indian Ocean as a function of fishing effort, strategy, and vessel characteristics based on an original and unique data set of more than 4300 bunkering operations that spanned the period 2013–2019. We used the model to estimate the total fuel consumption and associated GHG and SO₂ emissions of the Indian Ocean purse seine fishery between 1981 and 2019. Our results showed that the energetic performance of this fishery was characterized by strong interannual variability over the last four decades. This resulted from a combination of variations in tuna abundance but also changes in catchability and fishing strategy. In recent years, the increased targeting of schools associated with fish aggregating devices in response to market incentives combined with the IOTC management measure implemented to rebuild the stock of yellowfin tuna has strongly modified the productivity and spatio-temporal patterns of purse seine fishing. This had effects on fuel consumption and air pollutant emissions. Over the period 2015 to 2019, the purse seine fishery, including its support vessel component, annually consumed about 160,000 t of fuel and emitted 590,000 t of CO2-eq GHG. Furthermore, our results showed that air pollutant emissions can be significantly reduced when limits in fuel composition are imposed. In 2015, SO₂ air pollution exceeded 1500 t, but successive implementation of sulphur limits in the Indian Ocean purse seine fishery in 2016 and 2018 have almost eliminated this pollution. Our findings highlight the need for a routine monitoring of fuel consumption with standardized methods to better assess the determinants of fuel consumption in fisheries and the air pollutants they emit in the atmosphere.
Mostrar más [+] Menos [-]Mercury bioaccumulation in Tilefish (Lopholatilus chamaeleonticeps) from offshore waters of South Carolina, USA
2020
White, D Byron | Sinkus, Wiley | Altman, Kenneth C.
Mercury (Hg) concentrations in Tilefish (Lopholatilus chamaeleonticeps) have been reported to be one of the highest of all fish species, resulting in advisories that, historically, have recommended zero consumption. The current study assesses Hg bioaccumulation in Tilefish targeted by the commercial fisheries operating off the coast of South Carolina, USA. We provide results for an under-sampled region and explore how life history potentially impacts Hg uptake in Tilefish. Mercury concentration in Tilefish muscle tissue ranged from 0.10 to 0.99 ppm, with a mean of 0.23 ppm (n = 63). The majority of Tilefish samples (95%) were within the “Good Choices” range for consuming at least one serving per week, with 62% being within the range considered best for eating two meals a week”, per suggestion by the US EPA and US FDA (2017). The present study of Tilefish from the western Atlantic further substantiates the importance of monitoring Hg in commercial fish species regionally.
Mostrar más [+] Menos [-]Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China
2018
Hao, Zhuo | Zhang, Xinyu | Gao, Yang | Xu, Zhiwei | Yang, Fengting | Wen, Xuefa | Wang, Yueming
By identifying the main sources of nitrate (NO3−) can obtain useful information to support the management of NO3− pollution, particularly in subtropical catchments with shallow drinking water wells. This study used water chemistry and dual stable isotopes δ15N and δ18O methods to assess seasonal and spatial variations of NO3− in precipitation, surface water, and groundwater in an agricultural and forest subtropical catchment in Jiangxi Province, China. The maximum concentrations of nitrate-nitrogen (NO3−-N) and ammonium-nitrogen (NH4+-N) were 10.4 and 10.8 mg L−1in samples collected from 221 rainfall events from 2011 to 2013. About 4.4% and 12.3% NH4+-N concentrations of surface water and groundwater exceeded the thresholds of 1.0 and 0.2 mg L−1. The NO3−-N concentrations in surface water were closely correlated with NH4+-N concentrations in surface water and groundwater (r = −0.71 and r = −0.71, P < 0.05). The concentrations of NH4+-N and NO3−-N were significantly higher in a fishery pond and nearby drinking wells than in other monitoring points. Annual exports of NO3−-N and NH4+-N were 4.06 × 104 and 8.14 × 103 kg yr−1, respectively and NO3−-N is the main form of N loss. The δ15N values ranged from 0‰ to 20‰ in surface water and groundwater, and the δ18O values ranged from 0‰ to 15‰ and 1‰–13‰, respectively. Dual stable isotope natural abundance distribution and water chemistry [NO3−]/[Cl−] molar ratio information suggested that manure and sewage and soil N were the main sources of NO3− in surface water and manure and sewage in groundwater in summer and winter. In spring, water occurred denitrification and ammonium fertilizer, manure and sewage were the main sources of NO3− in surface water and groundwater which sampling points were closer residential area and fish ponds than paddy field and local farmers used more Manure. Manure applications should be reasonable around drinking water wells to protect the drinking water quality.
Mostrar más [+] Menos [-]Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea
2018
Pellini, G. | Gomiero, A. | Fortibuoni, T. | Ferrà, Carmen | Grati, F. | Tassetti, A.N. | Polidori, P. | Fabi, G. | Scarcella, G.
Micro-plastic particles in the world's oceans represent a serious threat to both human health and marine ecosystems. Once released into the aquatic environment plastic litter is broken down to smaller pieces through photo-degradation and the physical actions of waves, wind, etc. The resulting particles may become so small that they are readily taken up by fish, crustaceans and mollusks. There is mounting evidence for the uptake of plastic particles by marine organisms that form part of the human food chain and this is driving urgent calls for further and deeper investigations into this pollution issue.The present study aimed at investigating for the first time the occurrence, amount, typology of microplastic litter in the gastrointestinal tract of Solea solea and its spatial distribution in the northern and central Adriatic Sea. This benthic flatfish was selected as it is a species of high commercial interest within the FAO GFCM (General Fisheries Commission for the Mediterranean) area 37 (Mediterranean and Black Sea) where around 15% of the overall global Solea solea production originates.The digestive tract contents of 533 individuals collected in fall during 2014 and 2015 from 60 sampling sites were examined for microplastics. These were recorded in 95% of sampled fish, with more than one microplastic item found in around 80% of the examined specimens. The most commonly found polymers were polyvinyl chloride, polypropylene, polyethylene, polyester, and polyamide, 72% as fragments and 28% as fibers. The mean number of ingested microplastics was 1.73 ± 0.05 items per fish in 2014 and 1.64 ± 0.1 in 2015. PVC and PA showed the highest densities in the northern Adriatic Sea, both inshore and off-shore while PE, PP and PET were more concentrated in coastal areas with the highest values offshore from the port of Rimini.
Mostrar más [+] Menos [-]Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures
2016
Karamī, ʻAlī | Karbalaei, Samaneh | Zad Bagher, Fariba | Ismail, Amin | Simpson, Stuart L. | Courtenay, Simon C.
Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
Mostrar más [+] Menos [-]