Refinar búsqueda
Resultados 1-10 de 76
Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
Mostrar más [+] Menos [-]Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice
2022
Chen, Haifei | Zhang, Quan | Lv, Wei | Yu, Xiaoyi | Zhang, Zhenhua
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Mostrar más [+] Menos [-]Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings
2022
Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb²⁺ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 μg g⁻¹, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb²⁺ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb²⁺, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb²⁺. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O₂⁻ and H₂O₂, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.
Mostrar más [+] Menos [-]Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity
2020
AbdElgawad, Hamada | Zinta, Gaurav | Hamed, Badreldin A. | Selim, Samy | Beemster, Gerrit | Hozzein, Wael N. | Wadaan, Mohammed A.M. | Asard, Han | Abuelsoud, Walid
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
Mostrar más [+] Menos [-]Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses
2020
Hamed, Seham M. | Hassan, Sherif H. | Selim, Samy | Wadaan, Mohammed A.M. | Mohany, Mohamed | Hozzein, Wael N. | AbdElgawad, Hamada
Metalaxyl is a broad-spectrum chiral fungicide that used for the protection of plants, however extensive use of metalaxyl resulted in serious environmental problems. Thus, a study on the detoxification mechanism in algae/cyanobacteria and their ability for phycoremediation is highly recommended. Here, we investigated the physiological and biochemical responses of two cyanobacterial species; Anabaena laxa and Nostoc muscorum to R-metalaxyl toxicity as well as their ability as phycoremediators. Two different levels of R-metalaxyl, at mild (10 mg/L) and high dose (25 mg/L), were applied for one-week. We found that A. laxa absorbed and accumulated more intracellular R-metalaxyl compared to N. muscorum. R-metalaxyl, which triggered a dose-based reduction in cell growth, photosynthetic pigment content, and photosynthetic key enzymes’ activities i.e., phosphoenolpyruvate carboxylase (PEPC) and ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo). These decreases were significantly less pronounced in A. laxa. On the other hand, R-metalaxyl significantly induced oxidative damage markers, e.g., H₂O₂ levels, lipid peroxidation (MDA), protein oxidation and NADPH oxidase activity. However, these increases were also lower in A. laxa compared to N. muscorum. To alleviate R-metalaxyl toxicity, A. laxa induced the polyphenols, flavonoids, tocopherols and glutathione (GSH) levels as well as peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-s-transferase (GST) enzyme activities. On the contrary, the significant induction of antioxidants in N. muscorum was restricted to ascorbate, catalase (CAT) and ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) enzyme activities. Although A. laxa accumulated more R-metalaxyl, it experienced less stress due to subsequent induction of antioxidants. Therefore, A. laxa may be a promising R-metalaxyl phycoremediator. Our results provided basic data for understanding the ecotoxicology of R-metalaxyl contamination in aquatic habitats and the toxicity indices among cyanobacteria.
Mostrar más [+] Menos [-]Is guava phenolic metabolism influenced by elevated atmospheric CO2?
2015
Mendes de Rezende, Fernanda | Pereira de Souza, Amanda | Buckeridge, Marcos Silveira | Maria Furlan, Cláudia
Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO2 (∼390 ppm) and two with elevated CO2 (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO2 after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO2. Results suggest that elevated CO2 seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance.
Mostrar más [+] Menos [-]Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols
2011
Mei, Xin | Wu, Yuan-yuan | Mao, Xiao | Tu, You-Ying
Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene.
Mostrar más [+] Menos [-]Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality
2021
Wang, Gen | Wang, Li | Ma, Fang | Yang, Dongguang | You, Yongqiang
Earthworms and arbuscular mycorrhizal fungi (AMF) act synergistically in the rhizosphere and may increase host plant tolerance to Cd. However, mechanisms by which earthworm-AMF-plant partnerships counteract Cd phytotoxicity are unknown. Thus, we evaluated individual and interactive effects of these soil organisms on photosynthesis, antioxidant capacity, and essential nutrient uptake by Solanum nigrum, as well as on soil quality following Cd exposure (0–120 mg kg⁻¹). Decreases in biomass and photosynthetic activity, as well as nutrient imbalances were observed in Cd-stressed plants; however, the addition of AMF and earthworms reversed these effects. Cd exposure increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, whereas inoculation with Rhizophagus intraradices decreased those. Soil enzymatic activity decreased by 15–60% with increasing Cd concentrations. However, Cd-mediated toxicity was partially reversed by soil organisms. Earthworms and AMF ameliorated soil quality based on soil enzyme activity. At 120 mg kg⁻¹ Cd, the urease, catalase, and acid phosphatase activities were 1.6-, 1.4-, and 1.2-fold higher, respectively, in soils co-incubated with earthworms and AMF than in uninoculated soil. Cd inhibited shoot Fe and Ca phytoaccumulation, whereas AMF and earthworms normalized the status of essential elements in plants. Cd detoxification by earthworm-AMF-S. nigrum symbiosis was manifested by increases in plant biomass accumulation (22–117%), chlorophyll content (17–63%), antioxidant levels (SOD 10–18%, POD 9–25%, total polyphenols 17–22%, flavonoids 15–29%, and glutathione 7–61%). It also ameliorated the photosynthetic capacity, and macro- and micronutrient statuses of plants; markedly reduced the levels of malondialdehyde (20–27%), superoxide anion (29–36%), and hydrogen peroxide (19–30%); and upregulated the transcription level of FeSOD. Thus, the combined action of earthworms and AMF feasibly enhances metal tolerance of hyperaccumulating plants and improves the quality of polluted soil.
Mostrar más [+] Menos [-]Enhancement of polyphenolic metabolism as an adaptive response of lettuce (Lactuca sativa) roots to aluminum stress
2020
Chen, Yao | Huang, Lin | Liang, Xin | Dai, Peibin | Zhang, Yuxue | Li, Baohai | Lin, Xianyong | Sun, Chengliang
Polyphenols, pivotal secondary metabolites, are involved in plant adaption to abiotic stresses. Here, we investigated the role and metabolism profile of polyphenols under aluminum (Al) stress in different lettuce genotypes grown in 0.5 mM CaCl₂ solution with AlCl₃ (pH = 4.5). The complementary use of high-resolution mass spectrometry and quantitative biochemical approaches allowed the characterization of total and unique phenols, as well as their roles in Al tolerance. By comparing the most tolerant and sensitive genotype, 8 polyphenols, including 4 phenolic acids, 2 flavonoids, 1 xanthone and 1 unknown compound, were identified in the roots of the tolerant genotype. The total phenolic and flavonoid contents significantly increased in the tolerant genotype under Al stress. Seedlings with more phenolic accumulation usually performed greater Al tolerance. Meanwhile, principal enzymes related to phenolic biosynthesis significantly increased in roots of the tolerance genotype after Al treatment, with phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase, and 4-coumarate coenzyme A ligase increased by 16, 18 and 30%, respectively. The elevated total phenolics were significantly suppressed by AIP, a highly specific PAL inhibitor. Consequently, the antioxidant capacity was inhibited, leading to lettuce sensitivity to Al stress. These results clearly suggested the enhancement of unique polyphenolic biosynthesis as an adaptive strategy of lettuce to Al stress by protecting plants from oxidative stress.
Mostrar más [+] Menos [-]Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species
2019
Hamed, Seham M. | Hassan, Sherif H. | Selim, Samy | Kumar, Amit | Khalaf, Sameh M.H. | Wadaan, Mohammed A.M. | Hozzein, Wael N. | AbdElgawad, Hamada
Phycoremediation technologies significantly contribute to solving serious problems induced by heavy metals accumulation in the aquatic systems. Here we studied the mechanisms underlying Al stress tolerance in two diazotrophic cyanobacterial species, to identify suitable species for Al phycoremediation. Al uptake as well as the physiological and biochemical responses of Anabaena laxa and Nostoc muscorum to 7 days Al exposure at two different concentrations i.e., mild (100 μM) and high dose (200 μM), were investigated. Our results revealed that A. laxa accumulated more Al, and it could acclimatize to long-term exposure of Al stress. Al induced a dose-dependent decrease in photosynthesis and its related parameters e.g., chlorophyll content (Chl a), phosphoenolpyruvate carboxylase (PEPC) and Ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo) activities. The affect was less pronounced in A. laxa than N. muscorum. Moreover, Al stress significantly increased cellular membrane damage as indicated by induced H₂O₂, lipid peroxidation, protein oxidation, and NADPH oxidase activity. However, these increases were lower in A. laxa compared to N. muscorum. To mitigate the impact of Al stress, A. laxa induced its antioxidant defense system by increasing polyphenols, flavonoids, tocopherols and glutathione levels as well as peroxidase (POX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) enzymes activities. On the other hand, the antioxidant increases in N. muscorum were only limited to ascorbate (ASC) cycle. Overall, high biosorption/uptake capacity and efficient antioxidant defense system of A. laxa recommend its feasibility in the treatment of Al contaminated waters/soils.
Mostrar más [+] Menos [-]