Refinar búsqueda
Resultados 1-10 de 229
Influence de la pollution atmospherique fluoree sur la vegetation de la region d' Annaba (Algerie).
1986
Semadi A. | de Cormis L.
Effect of long term exposure to hydrogen fluoride on grapevines.
1984
Murray F.
Patterns of fluoride accumulation and growth reduction exhibited by Douglas fir in the vicinity of an aluminum reduction plant.
1984
Taylor R.J. | Basabe F.A.
Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation
2016
Brindha, Karthikeyan | Jagadeshan, G. | Kalpana, L. | Elango, L.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physica or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.
Mostrar más [+] Menos [-]Effects of soil fluoride pollution on wheat growth and biomass production, leaf injury index, powdery mildew infestation and trace metal uptake
2022
Ahmad, Muhammad Nauman | Zia, Afia | van den Berg, Leon | Ahmad, Yaseen | Mahmood, Rashid | Dawar, Khadim Muhammad | Alam, Syed Sartaj | Riaz, Muhammad | Ashmore, Mike
Fluoride (F) is an emerging pollutant that originates from multiple sources and adversely affects plant growth and nutrient bioavailability in soil. This greenhouse study investigated the effects of soil F (0, 10, 20, 50, 100, 200 mg kg⁻¹) on morpho-physiological growth characteristics of wheat, soil F contents, and bioavailability and uptake of F, phosphorus (P), sulphur (S), potassium (K), calcium (Ca), magnesium (Mg), aluminium (Al), iron (Fe), manganese (Mn), silicon (Si) and zinc (Zn) by wheat. Higher F significantly reduced plant height and number of leaves particularly at early growth stages and increased visible leaf injury index. Powdery mildew infestation coincided with leafy injury and was higher in elevated soil F treatments. Fluoride treatments (>50 mg kg⁻¹) significantly increased water (H₂O)- and calcium chloride (CaCl₂)-extractable F contents in soil. Water-extractable soil F contents from soil in all concentration were higher than CaCl₂-extractable F. This increased F bioavailability resulted in significantly higher F uptake and accumulation in live leaves, dead leaves and grains of wheat which followed order: live leaves > dead leaves > grains. Leaf injury index and number of dead leaves correlated significantly positively with soil H₂O- and CaCl₂-extractable F contents. Patterns of nutrient (P, K, S) and trace metals (Al, Ca, Mg, Fe, Mn, Si, Zn) varied significantly with F concentrations and between live and dead leaves, and grains except for Zn. Dead leaves generally had higher nutrients and trace metals than live leaves and grains. Fluoride contents in live leaves, dead leaves and grains showed positive correlations with nutrient elements but negative with trace metals. Number of dead leaves correlated negatively with Al, Ca, Fe, Mg, S and Si but positively with P and Zn contents in dead leaves whereas leaf injury index showed positive correlation with Fe, K, P, Si, Zn, S but negative with Al, Ca and Mg contents. These observations provided evidence of higher F uptake and associated impairment in nutrient and trace metal accumulation which caused leaf injury accompanied by powdery mildew infestation in wheat. However, further research in the region is required to confirm the relationship between F pollution, leaf injury and trace metal accumulation in crops under field conditions.
Mostrar más [+] Menos [-]Characteristics of fluoride migration and enrichment in groundwater under the influence of natural background and anthropogenic activities
2022
Xu, Peng | Bian, Jianmin | Li, Yihan | Wu, Juanjuan | Sun, Xiaoqing | Wang, Yu
Excessive enrichment of fluoride threatens ecological stability and human health. The high-fluoride groundwater in the Chagan Lake area has existed for a long time. With the land consolidation and irrigation area construction, the distribution and migration process of fluoride have changed. It is urgent to explore the evolution of fluoride under the dual effects of nature and human. Based on 107 groundwater samples collected in different land use periods, hydrogeochemistry and isotope methods were combined to explore the evolution characteristics and hydrogeochemical processes of fluoride in typical high-fluoride background area and elucidate the impact of anthropogenic activities on fluoride migration. The results indicate that large areas of paddy fields are developed from saline-alkali land, and its area has increased by nearly 30%. The proportion of high-fluoride groundwater (>2 mg/L) has increased by nearly 10%, mainly distributed in the new irrigation area. Hydrogeochemical processes such as dissolution of fluorine-containing minerals, precipitation of carbonate minerals and exchange of Na⁺, Ca²⁺ on the water-soil interface control the enrichment of fluoride. The groundwater d-excess has no obvious change with the increase of TDS, and human activities are one of the reasons for the increase of fluoride. The concentration of fluoride is diluted due to years of diversion irrigation in old irrigation area, whereas the enrichment of δ²H, δ¹⁸O and Cl⁻ in new irrigation area indicates that the vertical infiltration of washing alkali and irrigation water brought fluoride and other salts to groundwater. Fertilizer and wastewater discharges also contribute to the accumulation of fluoride, manifesting as co-increasing nitrate and chloride salts. The results of this study provide a new insight into fluoride migration under anthropogenic disturbance in high-fluoride background areas.
Mostrar más [+] Menos [-]Evaluating the genesis and dominant processes of groundwater salinization by using hydrochemistry and multiple isotopes in a mining city
2021
Chen, Xing | Jiang, Chunlu | Zheng, Liugen | Zhang, Liqun | Fu, Xianjie | Chen, Shigui | Chen, Yongchun | Hu, Jie
The increasing salinization of groundwater renders it challenging to maintain the water quality. Moreover, knowledge regarding the characteristics and mechanism of groundwater salinization in mining areas remains limited. This study represents the first attempt of combining the hydrochemical, isotope (δD, δ¹⁸O, δ³⁷Cl, and ⁸⁷Sr/⁸⁶Sr) and multivariate statistical analysis methods to explore the origin, control, and influence of fluoride enrichment in mining cities. The TDS content of groundwater ranged from 275.9 mg/L to 2452.0 mg/L, and 54% of the groundwater samples were classified as class IV water according to China's groundwater quality standards (GB/T 14848–2017), indicating a decline in the water quality of the study area. The results of the groundwater ion ratio and isotope discrimination analysis showed that dissolution and evaporation involving water-rock interactions and halite were the main driving processes for groundwater salinization in the study area. In addition to the hydrogeological and climatic conditions, mine drainage inputs exacerbated the increasing salinity of the groundwater in local areas. The mineral dissolution, cation exchange, and evaporation promoted the F⁻ enrichment, while excessive evaporation and salinity inhibited the F⁻ enrichment. Gangue accumulation and infiltration likely led to considerable F⁻ enrichment in individual groundwater regions. Extensive changes in the groundwater salinity indicated differences in the geochemical processes that controlled the groundwater salinization. Given the particularity of the study area, the enrichment of salinization and fluoride triggered by mining activities cannot be ignored.
Mostrar más [+] Menos [-]Increased health threats from land use change caused by anthropogenic activity in an endemic fluorosis and arsenicosis area
2020
Yuan, Li | Fei, Wang | Jia, Feng | Junping, Lv | Qi, Liu | Fangru, Nan | Xudong, Liu | Lan, Xu | Shulian, Xie
Urbanization is conducive to promoting social development and improving living standards. However, the changing land use attributed to urbanization has placed both the environment and humans at risk. Based on the long-term monitoring and the land use change during 2010–2017, we investigated the exposure of fluoride (F) and arsenic (As) in groundwater. We analyzed the temporal and spatial variation of F and As from different land use changes. The study assessed health risk for children by calculating carcinogenic risk and non-carcinogenic risk. Furthermore, we mapped the distribution pattern of F and As using GIS. For the 768 water samples collected from 2010 to 2017, F concentrations ranged between 0.10 and 5.70 mg L⁻¹ (M = 0.68 ± 0.02 mg L⁻¹), As concentrations ranged between 0.50 and 71.50 μg L⁻¹ (M = 4.28 ± 0.28 μg L⁻¹). A concerning result showed that 6.77% of F concentrations larger than 1.5 mg L⁻¹ and 11.46% of As concentrations larger than 10 μg L⁻¹ based on the recommendation by WHO, respectively. Results proved that land use change caused by human activity increased groundwater pollution and placed human health at risk. High F and As risk were found in southern Taiyuan City. In particular, the groundwater of industrial land suffered from more severe pollution, especially at the frontier of urban and suburban areas in the southern part of Taiyuan City. Land use change attributed to industrial land resulted in major increases in the F and As concentrations in groundwater across 2010–2017. Both carcinogenic risk and non-carcinogenic risk in 2016–2017 were higher than that in 2010–2015. Rational land use planning, strict groundwater protection policies and the regular monitoring of pollution levels are necessary in order to prevent the adverse health of residents.
Mostrar más [+] Menos [-]Indigenous microbes induced fluoride release from aquifer sediments
2019
Release of fluoride from Quaternary sediments produces F-contaminated groundwater which threatens the health of millions of people worldwide. Despite the mechanisms of fluoride release from sediments are documented by numerous studies, it remains poorly understood that whether indigenous microbes participate in or not for the formation of F-rich groundwater by releasing fluoride from aquifer sediments. A microcosm-based approach, geochemistry and techniques of microbiology and molecular ecology were conducted together to investigate these mechanisms. Results show that microbes are abundant in high [F] groundwater containing at least 1129 operational taxonomic units (OTUs), and indigenous microbes can have an essential role in the mobilization of fluoride in sediments collected from aquifers in a typical fluorosis area in China. It also shows that for the sediments in this study, fluoride release (ca. 2 mg/L) is coupled with elevated concentrations of Ca (△ = 75 mg/L), Mg (△ = 33 mg/L), Al (△ = 0.2 mg/L) and Mn (△ = 1.4 mg/L). This suggests that the fluoride may source from the dissolution of F-bearing carbonate minerals and/or Al-Mn hydroxides in a local acidic environment. The findings provide additional insights into the biogeochemical circulation of fluoride in natural environment, especially in groundwater system and the development of effective strategies for the management of F-contaminated groundwater worldwide.
Mostrar más [+] Menos [-]Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan
2019
Ali, Waqar | Aslam, Muhammad Wajahat | Junaid, Muhammad | Ali, Kamran | Guo, Yongkun | Rasool, Atta | Zhang, Hua
The present study aims to investigate the spatial distribution and associated various geochemical mechanisms responsible for fluoride (F⁻) contamination in groundwater of unconfined aquifer system along major rivers in Sindh and Punjab, Pakistan. The concentration of F⁻ in groundwater samples ranged from 0.1 to 3.9 mg/L (mean = 1.0 mg/L) in Sindh and 0.1–10.3 mg/L (mean = 1.0 mg/L) in Punjab, respectively with 28.9% and 26.6% of samples exhibited F⁻ contamination beyond WHO permissible limit value (1.5 mg/L). The geochemical processes regulated F⁻ concentration in unconfined aquifer mainly in Sindh and Punjab were categorized as follows: 1) minerals weathering that observed as the key process to control groundwater chemistry in the study areas, 2) the strong correlation between F⁻ and alkaline pH, which provided favorable environmental conditions to promote F⁻ leaching through desperation or by ion exchange process, 3) the 72.6% of samples from Sindh and Punjab were dominated by Na⁺- Cl⁻ type of water, confirmed that the halite dissolution process was the major contributor for F⁻ enrichment in groundwater, 4) dolomite dissolution was main process frequently observed in Sindh, compared with Punjab, 5) the arid climatic conditions promote evaporation process or dissolution of evaporites or both were contributing to the formation of saline groundwater in the study area, 6) the positive correlation observed between elevated F⁻ and fluorite also suggested that the fluorite dissolution also played significant role for leaching of F⁻ in groundwater from sediments, and 7) calcite controlled Ca2⁺ level and enhanced the dissolution of F-bearing minerals and drive F⁻ concentration in groundwater. In a nut shell, this study revealed the worst scenarios of F⁻ contamination via various possible geochemical mechanisms in groundwater along major rivers in Sindh and Punjab, Pakistan, which need immediate attention of regulatory authorities to avoid future hazardous implications.
Mostrar más [+] Menos [-]