Refinar búsqueda
Resultados 1-10 de 158
Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route Texto completo
2012
Fouqueray, Manuela | Dufils, Benjamin | Vollat, Bernard | Chaurand, Perrine | Botta, Céline | Abacci, K | Labille, Jérôme | Rose, Jérôme | Garric, Jeanne | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | The toxicity of dietary exposure to artificially aged TiO2 nanomaterial (T-Lite (TM)) used in sunscreen cream was studied on D. magna. Pseudokirchneriella subcapitata cultures were contaminated with TiO2-residues, obtained by artificial aging. Significant association of TiO2-residues on algae was detected by X-ray fluorescence spectromicroscopy. A D. magna dietary chronic exposure of these contaminated algae with TiO2-residues was performed. X-ray chemical imaging revealed that Ti was localized only in the digestive tract of the daphnia. Chronic exposure of daphnia to by-product of aged TiO2 nanoparticles brought by food induced low mortality but decreased growth and reproduction which can be partly related to the modification of the digestive physiology of daphnia. This study demonstrated that the assessment of the ecotoxicological impact of nanomaterials in aquatic environment should take into account the aging of these materials which can further influence their bioavailability for aquatic organisms.
Mostrar más [+] Menos [-]Food pollution
1972
Marine, Gene | Van Allen, Judith
Physical, chemical, and microbial contaminants in food waste management for soil application: A review Texto completo
2022
O'Connor, James | Mickan, Bede S. | Siddique, Kadambot H.M. | Rinklebe, Jörg | Kirkham, M.B. | Bolan, Nanthi S.
Currently, 1.3 billion tonnes of food are thrown away each year, most of which are incinerated or landfilled causing large environmental, social, and economic issues. Therefore, the utilisation of food waste as biofertilisers, such as composts and digestates, is a solution to reduce the problems created by incineration and landfilling whilst simultaneously amending soils. The improper disposal of food wastes and bulking materials can contribute to high levels of contaminants within the end-product. Moreover, the food waste and bulking materials, themselves, may contain trace amounts of contaminants. These contaminants tend to have long half-lives, are easily mobile within soil and plants, can accumulate within the food supply chain, and have moderate to high levels of toxicity. This review aims to examine the current and emerging contaminants of high concern that impact the quality of food-waste fertilisers. The paper presents the volume of current and emerging contaminants of plastics, other physical (particulate) contaminants, heavy metals, pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFAS), and pathogens within food-waste composts and digestates. Due to the large extent of organic chemical contaminants and the unknown level of toxicity and persistence, the risk assessment of organic chemical contaminants in the food-supply chain remains largely unknown. This study has presented available data from literature of various contaminants found in food waste, and composts and digestates derived from food waste, and evaluated the data with current regulations globally. Overall, to reduce contaminants in composts and digestates, more studies are required on the implementation of proper disposal separation, effective composting and digestion practices, increased screening of physical contaminants, development of compostable plastics, and increased regulatory policies on emerging, problematic contaminants. Moreover, examination of emerging contaminants in food-waste composts and digestates is needed to ensure food security and reduce future human-health risks.
Mostrar más [+] Menos [-]Improved Raman spectroscopy-based approach to assess microplastics in seafood Texto completo
2021
Leung, Matthew Ming-Lok | Ho, Yuen-Wa | Lee, Cheng-Hao | Wang, Youji | Hu, Menghong | Kwok, Kevin Wing Hin | Chua, Song-Lin | Fang, James Kar-Hei
Microplastics represent an emerging environmental issue and have been found almost everywhere including seafood, raising a great concern about the ecological and human health risks they pose. This study addressed the common technical challenges in the assessment of microplastics in seafood by developing an improved protocol based on Raman spectroscopy and using the green-lipped mussel Perna viridis and the Japanese jack mackerel Trachurus japonicus as the test models. Our findings identified a type of stainless-steel filter membranes with minimal Raman interference, and a combination of chemicals that achieved 99–100% digestion efficiency for both organic and inorganic biomass. This combined chemical treatment reached 90–100% recovery rates for seven types of microplastics, on which the surface modification was considered negligible and did not affect the accuracy of polymer identification based on Raman spectra, which showed 94–99% similarity to corresponding untreated microplastics. The developed extraction method for microplastics was further combined with an automated Raman mapping approach, from which our results confirmed the presence of microplastics in P. viridis and T. japonicus collected from Hong Kong waters. Identified microplastics included polypropylene, polyethylene, polystyrene and poly(ethylene terephthalate), mainly in the form of fragments and fibres. Our protocol is applicable to other biological samples, and provides an improved alternative to streamline the workflow of microplastic analysis for routine monitoring purposes.
Mostrar más [+] Menos [-]Mapping polychlorinated dibenzo-p-dioxins/dibenzofurans in soils around Pugu municipal dump site in Dar es Salaam, Tanzania: Implications on dermal and soil ingestion exposure for people in the peripheral Texto completo
2020
Pius, Christina | Koosaletse-Mswela, Pulane | Sichilongo, Kwenga | Dikinya, Oagile
Experimental data on the contribution of a dump site in Tanzania as a point source of the 17 possible congeners of PCDD/Fs to the environment is presented. Dry and wet season samples were collected around Pugu municipal dump site followed by GCxGC-TOFMS analysis. The dominant congeners were OctaCDD, 1,2,3,4,6,7,8-HepCDF; 1,2,3,4,6,7,8-HeptaCDD and 1,2,4,7-PeCDD. The concentrations of the congeners expressed as TEQ WHO₂₀₀₅ ranged from 11.69 to 48.97 pg/g with a mean of 29.44 pg/g for the dry season and TEQ WHO₂₀₀₅ 4.13–85.82 pg/g with a mean of 41.51 pg/g for the wet season. These levels were speculated high enough to accumulate in free-range chickens and cause harmful effects to humans that consumed them especially residents around Pugu dump site. Exposure of people to PCDD/Fs through dermal absorption and soil ingestion were estimated using the VLIER-HUMAAN Mathematical model. Exposure through dermal absorption was estimated to be 1.2 × 10⁻⁴ and 9.8 × 10⁻⁶ ng TEQ/kg day for children and adults respectively while through soil ingestion via consumption of contaminated foods and other sources was 0.0045 and 0.27 ng TEQ/kg day for children and adults respectively. These values however were well below the WHO tolerable daily intake. Generally, there was no significant variation for total PCDD/Fs in the dry and wet season (α = 0.08). Strong positive correlation (r = 0.94) between total PCDD/Fs and organic matter content was observed during the wet season.
Mostrar más [+] Menos [-]Arsenic, chromium, and other elements of concern in fish from remote boreal lakes and rivers: Drivers of variation and implications for subsistence consumption Texto completo
2020
Lescord, Gretchen L. | Johnston, Thomas A. | Heerschap, Matthew J. | Keller, W (Bill) | Southee, F Meg | O’Connor, Constance M. | Dyer, Richard D. | Branfireun, Brian A. | Gunn, John M.
Eating fish provides numerous health benefits, but it is also a dominant pathway for human exposure to contaminants. Many studies have examined mercury (Hg) accumulation in fish, but fewer have considered other elements, such as arsenic (As) and chromium (Cr). Recently, freshwater fish from several pristine boreal systems across northern Ontario, Canada, have been reported with elevated concentrations of As and Cr for reasons that are not well understood. Our goal was to investigate the ecological and environmental influences over concentrations of As, Cr, and other elements in these fish to better understand what affects metal uptake and the risk to consumers. We measured 10 elements (including As, Cr, Hg) as well as carbon (δ¹³C), nitrogen (δ¹⁵N), and sulfur (δ³⁴S) stable isotopes in 388 fish from 25 lake and river sites across this remote region. These data were used to determine the effect of: 1) trophic ecology; and 2) watershed geology on piscine elemental content. Overall, most element concentrations were low, often below provincial advisory benchmarks (ABs). However, traces of Hg, As, Cr, and selenium (Se) were detected in most fish. Based on their exceedance of their respective ABs, the most restrictive elements on fish consumption in these boreal systems were Hg > As > Cr. Arsenic and Se, but not Cr concentrations were related to fish size and trophic ecology (inferred from δ¹³C and δ¹⁵N), suggesting bioaccumulation of the former elements. Fish with enriched δ³⁴S values, suggestive of anadromous behaviour, had marginally lower Hg but higher Se concentrations. Modeling results suggested a strong effect of site-specific factors, though we found weak trends between piscine elemental content and geological features (e.g., mafic intrusions), potentially due to the broad spatial scale of this study. Results from this study address gaps in our understanding of As and Cr bioaccumulation and will help to inform fish consumption guidelines.
Mostrar más [+] Menos [-]Effects of endocrine disrupting chemicals in pigs Texto completo
2020
Yang, Changwon | Song, Gwonhwa | Lim, Whasun
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
Mostrar más [+] Menos [-]Uptake, translocation and distribution of three veterinary antibiotics in Zea mays L Texto completo
2019
Zhang, Cheng | Xue, Jianming | Cheng, Dengmiao | Feng, Yao | Liu, Yuanwang | Aly, Hesham M. | Li, Zhaojun
Frequently detected residuals of antibiotics in crops has drawn increasing attention from research community and the general public. This study was conducted under the controlled environmental conditions to investigate the uptake, translocation and distribution of three different veterinary antibiotics (VAs) in plants of Zea mays L. (maize, the third largest crop in the world, especially in China) and the associated mechanisms. The distribution color-maps of mixed-VAs showed that the highest RCF (root concentration factors) values of chlortetracycline (CTC) and sulfamethoxazole (SMZ) were found in the 0.5–2.0 mm zone (cell division zone), while the highest RCF value of sulfathiazole (ST) was in the 6.0–8.0 mm zone (elongation zone) of root tips (0.5–10.0 mm) after 120 h of exposure to VAs. The translocation factor (TF) of CTC was greater than 1.0, but the TFs of SMZ and ST were less than 1.0 under addition of single antibiotic. However, the TFs of three VAs were all greater than 1.0 at the end of exposure under addition of mixed-VAs. The dissipation of antibiotics by maize was also demonstrated by harvesting all plant parts in an enclosed system. The possible mechanisms for uptake and translocation of VAs in maize were investigated by adding multiple respiration inhibitors into the culture solution. The RCFs of VAs were suppressed heavily by salicylhydroxamic acid (SHAM) and sodium azide (NaN3), which indicates that the uptake of VAs was an active process. The results of TFs and stem concentration factors (SCFs) of CTC and SMZ in HgCl2 treatments revealed that the translocation of VAs was associated with the aquaporin activity in maize. The findings from this study will have significant implications for the management of crop food contamination by VAs and for the development of phytoremediation technology for antibiotics in the environment.
Mostrar más [+] Menos [-]Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks Texto completo
2019
Liu, Juan | Li, Nuo | Zhang, Weilong | Wei, Xudong | Tsang, Daniel C.W. | Sun, Yubing | Luo, Xuwen | Bao, Zhi'an | Zheng, Chouyu | Wang, Jin | Xu, Guoliang | Hou, Liping | Chen, Yongheng | Feng, Yuexing
Thallium (Tl) is a trace metal of severe toxicity. Its health concerns via consumption of contaminated vegetables have often been overlooked or underestimated. This study was designed to gain insight into the actual level and distribution characteristics of Tl and metal (loid)s (Pb, Cd, Cr, Sb, Mn, Cu, Zn, Ni, and Co) in agricultural soils and common vegetables cultivated in different zones (upstream, midstream, and downstream) of a densely populated residential area in a typical mine city, which has been open-pit exploiting Tl-bearing pyrite minerals since 1960s. The results show that most of the agricultural soils exhibit contaminated levels of Tl, with Tl contents (upstream: 1.35–4.31 mg/kg, midstream: 2.43–5.19 mg/kg, and downstream: 0.65–2.33 mg/kg) mostly exceeding the maximum permissible level (MPL) for agricultural land use (1 mg/kg). Sequential extraction procedure indicates that even Tl is predominantly retained in the residual fraction, significant levels of Tl are still present in the geochemically mobile fractions. Besides, metals like Cu, Cd, Mn, and Co are mostly distributed in the labile fractions. Almost all metal (loid)s in edible parts of the vegetables exceed their corresponding MPL for consumption. The chronic daily intake (CDI) and hazard quotient (HQ) values calculated for inhabitants at different ages indicate non-negligible Tl risks via consumption of local vegetables, especially for children. Therefore, it is critical to establish effective measures for hazardous waste management and enforceable regulations in Tl-polluted area to mitigate potential severe impacts of Tl on human health through food chain.
Mostrar más [+] Menos [-]Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination Texto completo
2019
Kammoun, Souad | Mulhauser, Blaise | Aebi, Alexandre | Mitchell, Edward A.D. | Glauser, Gaétan
Neonicotinoids and the closely related insecticide classes sulfoximines and butenolides have recently attracted growing concerns regarding their potential negative effects on non-target organisms, including pollinators such as bees. Indeed, it is becoming increasingly clear that these effects may occur at much lower levels than those considered to be safe for humans. To properly assess the ecological and environmental risks posed by neonicotinoids, appropriate sampling and analytical procedures are needed. Here, we used honey as reliable environmental sampler and developed an unprecedentedly sensitive method based on QuEChERS and UHPLC-MS/MS for the simultaneous determination of the nine neonicotinoids and related molecules currently present on the market (acetamiprid, clothianidin, dinotefuran, flupyradifurone, imidacloprid, nitenpyram, sulfoxaflor, thiacloprid and thiamethoxam). The method was validated and provided excellent levels of precision and accuracy over a wide concentration range of 3–4 orders of magnitude. Lowest limits of quantification (LLOQs) as low as 2–20 pg/g of honey depending on the analytes were reached. The method was then applied to the analysis of 36 honey samples from various regions of the World which had already been analysed for the five most common neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam) in a previous study. This allowed us to determine the long-term stability (i.e. up to 40 months) of these molecules in honey, both at room temperature and −20 °C. We found that the five pesticides were stable over a period of several years at −20 °C, but that acetamiprid and thiacloprid partially degraded at room temperature. Finally, we also measured the levels of dinotefuran, nitenpyram, sulfoxaflor and flupyradifurone and found that 28% of the samples were contaminated by at least one of these pesticides.
Mostrar más [+] Menos [-]