Refinar búsqueda
Resultados 1-8 de 8
Evaluation of formaldehyde exposure among gross dissection after modified embalming solution and health assessment
2022
Soonklang, Nantawan | Saowakon, Naruwan
Mainly embalming fixative contains formaldehyde which is classified as a carcinogen. People who work with cadavers have been at higher risk of cancer after formaldehyde exposure. We have formulated a less-formalin fixative (contained 3.6% formaldehyde,23.8% ethanol, 15% glycerin, and 0.2% phenol in the water) for preserving cadavers. Therefore, the objective of the present study was to evaluate the level of atmospheric formaldehyde indoors and the breathing exposure of medical students during dissection classes. We also analyzed the pulmonary parameters and effects of formaldehyde. The levels of atmospheric formaldehyde indoors and personal breathing exposure were sampled during anatomy dissection classes (musculoskeletal system, respiratory system, and abdominopelvic organ system) using sorbent tubes with air sampling pumps. Samples were then analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The mean level of formaldehyde indoor air among the three classes was 0.518 ± 0.156 ppm whereas the formaldehyde level in the personal breathing zone was 0.956±0.408 ppm, which exceeded the recommended exposure standards of international agencies, including NIOSH agency and PEL of Thailand legislation. The laboratory had high humidity, high room temperature, and poor air ventilation. There was a significant difference in FVC, FEV1, and PEF (p < 0.05) between the sexes of students. Comparison pulmonary parameters between students and instructors showed that all parameters of the pulmonary function test had no significant differences. General fatigue and burnings of eyes and nose associated with strong odor were the most common symptoms reported during the dissection classes. The modified embalming fixative was used less formalin with ethanol-glycerin mixture, and it was suitable for the study of medical students, with few side effects of respiratory problems. However, the modified exhaust ventilation with local table-exhaust ventilation and heating-ventilation-air conditioning system performance were urgent issues for reducing levels of formaldehyde indoor air in the dissection room.
Mostrar más [+] Menos [-]Sub-lethal Effects of Imidacloprid on Nile Tilapia (Oreochromis niloticus)
2020
Günal, Aysel Çağlan | Erkmen, Belda | Paçal, Elif | Arslan, Pınar | Yildirim, Zuhal | Erkoç, Figen
Imidacloprid (1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine (CAS No: 138261–41-3), neonicotinoid insecticide, and agricultural plant protectants were applied as seed and soil treatments. The aim of the present study is to determine the effects of sub-lethal imidacloprid concentrations on the histopathology and oxidative stress parameters with lipid peroxidation (LPO) to standard non-target test organism, tilapia (Oreochromis niloticus). 50 and 100 mgL⁻¹ imidacloprid concentrations were chosen for experimental groups with control group. Fish were stocked in 60 L glass aquaria, maintained in aerated and dechlorinated tap water. The mean weight and length of tilapia were 37.78 ± 2.19 g and 12.98 ± 0.22 cm, respectively. After 24 and 96 h exposure to sub-lethal imidacloprid concentrations, the fish were sacrificed; tissue samples of gill and liver were snap frozen in liquid nitrogen for oxidative stress parameters and LPO assays, fixed (buffered 10% formalin) for histopathology. After exposure to sub-lethal imidacloprid, LPO was induced in both tissues. MDA levels were increased in both tissues, while GSH levels were reduced at the high concentration of imidacloprid in the gill tissues after 96 h and both concentrations in the liver tissues (P < 0.05). There were no significant differences for antioxidant enzymes CAT, SOD and GPx between exposed and control groups (P > 0.05). Gill tissues revealed hyperaemia, epithelial lifting, fusion of secondary lamellae and telangiectasia, whereas hyperaemia, mononuclear cell infiltration vacuolization of hepatocytes and hydropic degeneration were observed in liver tissues. Imidacloprid is very toxic to the non-target species in the aquatic ecosystem even at sub-lethal concentrations.
Mostrar más [+] Menos [-]Substrate sterilization with thiophanate-methyl and its biodegradation to carbendazim in oyster mushroom (Pleurotus ostreatus var. florida)
2020
Sharma, Ved Parkash | Anil Kumar, | Kumar, Satish | Barh, Anupam | Kamal, Shwet
Residue analysis to detect thiophanate-methyl and its primary metabolite (carbendazim) during oyster mushroom (Pleurotus ostreatus var. florida) cultivation was done for two consecutive years 2017 and 2018. Wheat straw substrate was chemically treated with different treatments of thiophate-methyl, viz, thiophanate-methyl 30 ppm + formalin 500 ppm (T1), thiophanate-methyl 40 ppm + formalin 500 ppm (T2), thiophanate-methyl 50 ppm + formalin 500 ppm (T3), thiophanate-methyl 60 ppm + formalin 500 ppm (T4), and formalin 500 ppm (T5 as control and recommended concentration), and utilized for cultivation of oyster mushroom. Treatments T3 and T4 exhibited significant difference in pH levels during both the trials. Minimum spawn run, pinhead formation, and fruit body formation time were recorded in treatments T3 and T4. Significantly higher biological efficiency (%) was recorded in treatments T3 and T4 as compared with all other treatments. No incidence of competitor molds was recorded in T3 and T4. Pesticide residue analysis for detection of thiophanate-methyl and its metabolite (carbendazim) was done in the fruit body produced in T3 and T4 treatments using liquid chromatography with tandem mass spectrometry method. No residue of thiophanate-methyl and carbendazim was detected at 50 ppm concentration of thiophanate-methyl during both the trials. However, in trial II, residue of carbendazim (5.39 μg/kg) was detected at 60 ppm. Based on the findings of the trials I and II, T3 (thiophanate-methyl 50 ppm + formalin 500 ppm) may be utilized for substrate sterilization for oyster mushroom cultivation and Pleurotus ostreatus var. florida could be recognized as microorganism which could play a role in degradation of thiophanate-methyl.
Mostrar más [+] Menos [-]Assessment of alternatives to environmental toxic formalin for DNA conservation in biological specimens
2017
Sarot, Emeline | Carillo-Baraglioli, Marie-Françoise | Duranthon, F. (Francis) | Péquignot, Amandine | Pyronnet, Stéphane
One essential step of museum and clinical specimen preservation is immersion in a fixative fluid to prevent degradation. Formalin is the most largely used fixative, but its benefit is balanced with its toxic and carcinogenic status. Moreover, because formalin-fixation impairs nucleic acids recovery and quality, current museum wet collections and formalin-fixed, paraffin-embedded clinical samples do not represent optimal tanks of molecular information. Our study has been developed to compare formalin to two alternative fixatives (RCL2® and ethanol) in a context of molecular exploitation. Based on a unique protocol, we created mammalian fixed collections, simulated the impact of time on preservation using an artificial ageing treatment and followed the evolution of specimens’ DNA quality. DNA extraction yield, purity, visual integrity and qualitative and quantitative ability to amplify the Cox1 gene were assessed. Our results show that both RCL2 and ethanol exhibit better performances than formalin. They do not impair DNA extraction yield, and more importantly, DNA alteration is delayed over the preservation step. The use of RCL2 or ethanol as fixative in biological collections may insure a better exploitation of the genetic resources they propose.
Mostrar más [+] Menos [-]Histological and immunohistochemical evaluation of the effect of tartrazine on the cerebellum, submandibular glands, and kidneys of adult male albino rats
2019
El-sakhawy, Mohamed A. | Mohamed, Dina W | Ahmed, Yasmine H.
Tartrazine is one of the most widely used food additives. The present investigation was carried out on 40 adult male albino rats. They were divided into four groups of ten animals for each. Group I was considered as a control group. Group II was treated with tartrazine daily in a dose 7.5 mg/kg body weight by oral gavage for 30 days. Group III was received 15 mg/kg body weight of tartrazine for the same period. Group IV was administered tartrazine in a dose 100 mg/kg body weight for the whole duration of the experiment. At the end of experiment, samples from the cerebellum, submandibular salivary glands, and kidneys were fixed in neutral buffered formalin 10% and prepared routinely for paraffin sectioning and staining for histopathological and immunohistochemical investigations of proliferating cell nuclear antigen “PCNA” and glial fibrillar acidic protein “GFAP”. Tartrazine-treated groups revealed histopathological degenerative changes in the obtained organs. In group II, the cerebellum showed subcortical edema, congestion of the blood vessels, cytoplasmic vacuolations, and pyknosis of the nuclei in the gray matter neurons. Concerning the submandibular glands, they expressed cytoplasmic vacuolations and pyknosis of the nuclei of the acinar cells, congestion of the interacinar blood capillaries, and degenerative changes in the striated duct. The kidneys appeared with interstitial hemorrhage and dilatation of the glomerular capillaries. The PCT and DCT showed ill-defined cell boundaries. The collecting tubules in the renal medulla appeared with flattened epithelial cells. The severity of these changes increases by increasing the dose of tartrazine in group III and reach to the highest level in group IV. The immunoexpression of the GFAP in the cerebellum of the experimental groups was intense compared to the control group. The immunoreactivity of PCNA in the nuclei of the acinar and ductal cells of the submandibular gland and the cells of the renal cortex and medulla was strong in the tartrazine-treated groups compared to the control group. The current study concluded that the tartrazine had serious effect on the cerebellum, submandibular glands, and kidneys that adversely affect the functions of these organs.
Mostrar más [+] Menos [-]Levels of formaldehyde vapor released from embalmed cadavers in each dissection stage
2016
Sugata, Yota | Miyaso, Hidenobu | Odaka, Yoko | Komiyama, Masatoshi | Sakamoto, Noboru | Mori, Chisato | Matsuno, Yoshiharu
Formaldehyde (FA) is an aldehyde used in antiseptics and adhesives. The World Health Organization (WHO) and other institutes have linked FA to sick building syndrome and allergic diseases. Recent studies have reported that cadavers embalmed using formalin and ethanol-based preservative solutions release FA vapor during dissection and that FA vapor may adversely affect students and lecturers in gross anatomy laboratories. However, few details have been reported correlating dissection stage with increased FA vapor release. In this study, we evaluated the vapor level of FA released in each dissection stage. Six cadavers for which consent was given for use in anatomy research and education were examined in this study. Using an active sampling method, FA vapor was collected above the thoracoabdominal region of each dissected cadaver. FA was eluted from each sampler using acetonitrile and analyzed by high-performance liquid chromatography. Our data show that FA levels significantly increase after skin incision and that the vapor level of FA released differs between male and female cadavers. We also found that subcutaneous adipose tissues of the thoracoabdominal-region release FA vapor and that female cadavers release significantly higher levels of FA per kilogram of subcutaneous adipose tissue than do male cadavers. Based on these data, we propose the methods be developed to prevent exposure to FA vapors released from cadavers.
Mostrar más [+] Menos [-]Spatial distribution of metals within the liver acinus and their perturbation by PCB126
2018
Klaren, William D. | Vine, David | Vogt, Stefan | Robertson, Larry W.
Animal studies show that exposure to the environmental pollutant 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) causes alterations in hepatic metals as measured in acid-digested volume-adjusted tissue. These studies lack the detail of the spatial distribution within the liver. Here we use X-ray fluorescence microscopy (XFM) to assess the spatial distribution of trace elements within liver tissue. Liver samples from male Sprague Dawley rats, treated either with vehicle or PCB126, were formalin fixed and paraffin embedded. Serial sections were prepared for traditional H&E staining or placed on silicon nitride windows for XFM. With XFM, metal gradients between the portal triad and the central vein were seen, especially with copper and iron. These gradients change with exposure to PCB126, even reverse. This is the first report of how micronutrients vary spatially within the liver and how they change in response to toxicant exposure. In addition, high concentrations of zinc clusters were discovered in the extracellular space. PCB126 treatment did not affect their presence, but did alter their elemental makeup suggesting a more general biological function. Further work is needed to properly evaluate the gradients and their alterations as well as classify the zinc clusters to determine their role in liver function and zinc homeostasis.
Mostrar más [+] Menos [-]Co-administration of glutathione alleviates the toxic effects of 2,3,7,8 TCDF on the DNA integrity of sperm and in the testes of mice
2018
Yahia, Doha | El-Amir, Yasmin O. | Abd El-Maguid, Doaa S. | Elsharkawy, Eman E.
This study aimed to investigate the toxic impact prompted in the testes of adult mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF). Four groups of 12 mice each were used in the present study. Group 1 mice were kept as control and administered corn oil only. Group 2 animals were given glutathione (GSH) in a dose of 100 mg/kg body weight by oral gavage twice a week. Group 3 was given TCDF orally twice per week, in a dose of 0.5 μg/kg body weight for 8 weeks. Group 4 was administered GSH orally in a dosage of 100 mg/kg body weight plus TCDF twice a week for 8 weeks. Animals were sacrificed after 2, 4, and 8 weeks of exposure, serum samples were collected for estimation of testosterone hormone, the testes were dissected and one part was used for estimation of superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH), and 3β–hydroxysteroid dehydrogenase. Another portion of the testis was kept in formalin for histopathological examination. The results showed that the activities of SOD were decreased while the levels of lipid peroxidation MDA were increased in the testicular tissues of the exposed mice. The serum testosterone level and the steroidogenic enzyme 3β–hydroxysteroid dehydrogenase activity of testicular homogenate were essentially decreased in TCDF-treated mice. A significant increment in the testicular LDH activity in testicular tissues was recorded in mice exposed to TCDF. The percentage of DNA chromatin disintegration was significantly increased in TCDF-treated mice. Histopathological changes were recorded in TCDF-exposed group as degenerative changes of the seminiferous tubules with formation of spermatid giant cells at 2 weeks in addition to exhaustion of germinal epithelium and detachment of the germ cells from the basal lamina at 4 and 8 weeks. Co-administration of GSH could reestablish MDA and LDH levels besides reduction in percentage of sperm DNA damage and improvement of the testicular tissue architecture.
Mostrar más [+] Menos [-]