Refinar búsqueda
Resultados 1-10 de 114
Effect of fulvic acid concentration levels on the cleavage of piperazinyl and defluorination of ciprofloxacin photodegradation in ice
2022
Li, Zhuojuan | Dong, Deming | Zhang, Liwen | Li, Yanchun | Guo, Zhiyong
Ice is an important physical and chemical sink for various pollutants in cold regions. The photodegradation of emerging fluoroquinolone (FQ) antibiotic contaminants with dissolved organic matter (DOM) in ice remains poorly understood. Here, the photodegradation of ciprofloxacin (CIP) and fulvic acid (FA) in different proportions as representative FQ and DOM in ice were investigated. Results suggested that the photodegradation rate constant of CIP in ice was 1.9 times higher than that in water. When CFA/CCIP ≤ 60, promotion was caused by FA sensitization. FA increased the formation rate of cleavage in the piperazine ring and defluorination products. When 60 < CFA/CCIP < 650, the effect of FA on CIP changed from promoting to inhibiting. When 650 ≤ CFA/CCIP ≤ 2600, inhibition was caused by both quenching effects of 143.9%–51.3% and light screening effects of 0%–48.7%. FA inhibited cleavage in the piperazine ring for CIP by the scavenging reaction intermediate of aniline radical cation in ice. When CFA/CCIP > 2600, the light screening effect was greater than the quenching effect. This work provides new insights into how DOM affects the FQ photodegradation with different concentration proportions, which is beneficial for understanding the environmental behaviors of fluorinated pharmaceuticals in cold regions.
Mostrar más [+] Menos [-]Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging
2022
Peng, Jinlong | Fu, Fenglian | Ye, Chujia | Tang, Bing
Selenium (Se) is regarded as a trace element for humans, but it is toxic in excess. In natural environments, the mobility of Se is dominantly controlled by the Se oxyanions with high solubility such as selenite (Se(IV)). Se(IV) is often associated with the omnipresent ferrihydrite and coexisting organic matter. However, there is little information on the dynamic interactions among Se(IV), fulvic acid, and ferrihydrite. This study investigated the influence of fulvic acid on ferrihydrite-Se(IV) coprecipitates (Fh-Se) transformation for 8 days and the subsequent behavior of Se(IV) at varied pH (5.0, 7.5, and 10.0). Results showed that fulvic acid had different effects on Fh-Se transformation at varied pH values. Fh-Se transformation was promoted by fulvic acid at initial pH 5.0 whereas it was inhibited at initial pH 10.0. Interestingly, at initial pH 7.5, Fh-Se transformation was promoted at a low C/Fe ratio while it was suppressed at a high C/Fe ratio. Besides, fulvic acid induced the generation of more extractable Se(IV) at initial pH 5.0 and more coprecipitated Se(IV) at initial pH 7.5 and blocked the release of Se(IV) at initial pH 10.0. Fulvic acid possibly interacted with Se(IV) via carboxyl complexation and weakened the inhibition of Se(IV) on Fh-Se transformation. Thus, fulvic acid increased the transformation rate of Fh-Se. These findings help to uncover the environmental behavior of Se(IV) and organic matter during ferrihydrite transformation.
Mostrar más [+] Menos [-]Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors
2020
Hou, Jun | Xu, Xiaoya | Lan, Lin | Miao, Lingzhan | Xu, Yi | You, Guoxiang | Liu, Zhilin
The long-term contamination of soil by microplastics may pose risks that are often still not well understood, and the ecological effects of microplastics are mainly dependent on their environmental behavior in environments. This study used saturated quartz sand as a solid porous medium to study the migration and influencing factors of 40–48 μm polyethylene (PE) particles in saturated porous media. The breakthrough curves at different injection concentrations (0.3, 0.4, 0.5 mg/L), flow rates (1.0, 1.5, 2.0, 2.5 ml/L), porous medium particle sizes (1–2, 2–4 mm), ionic strengths (0, 0.01, 0.05 mol/L) and concentrations of fulvic acid (FA) (0, 5, 10 mg/L) were compared and analyzed. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to more accurately explain relevant transport behaviors. The results showed that the input concentration, flow rate, and particle size can affect the migration of PE particles individually or in combination. As ionic strength increased, the repulsion between microplastics and quartz sand gradually disappeared according to DLVO theory, and their attraction gradually strengthened. As a result, fewer microplastics could penetrate the sand column and reach the water body. With the continuous addition of FA, the repulsive energy between microplastics and quartz sand rose from DLVO theory, and the migration ability of microplastics initially increased before becoming stable because of the effect of straining. In all cases, the migration ability of PE was low (C/C₀ < 0.35), and most PE particles remained in the porous media during the whole experimental periods. This study provides new insights of understanding the migration of microplastics in environment.
Mostrar más [+] Menos [-]Effects of fulvic acid and fulvic ions on Escherichia coli survival in river under repeated freeze-thaw cycles
2019
Wang, Xu | Zhang, Dongyan | Chen, Weiwei | Tao, Jiahui | Xu, Meng | Guo, Ping
The effects of fulvic acid (FA) and ions on mesophilic pathogenic bacteria survival under freeze-thaw (FT) stress in natural water and its resistant mechanisms are rarely understood. Therefore, survival patterns of Escherichia coli in river water added with various concentrations of FA or FA-ion under FT stress were studied in this work. Meanwhile, cell surface hydrophobicity (CSH), unit activities of superoxide dismutase (SOD) and catalase (CAT) were determined and Escherichia coli morphologies were observed to explore the bacterial resistant mechanisms against FT stress. The results demonstrated that FT cycles significantly reduced bacterial quantities as sampling time, i.e. freeze-thaw cycle time increased. And the biggest reducing rate was observed after the first FT cycle in every system. Ttd values, time needed to reach detection limit under FT stress decreased under FT stress as FA was added into water, while the changes of ttd values were quite complicated when FA and various ions existed together. Generally, the ttd values of FA-cation systems exceeded that of FA system except FA-Ca²⁺ systems, but it was opposite for FA-anion systems. CSH was heightened after FT cycles and reached peak value at last sampling time in every system. Mechanical constraint from extracellular ice crystals and high CSH induced bacterial aggregation, which protect inner cells of aggregation from extracellular ice crystals. And the unit activities of SOD were significantly higher than those of CAT. Unit activities of SOD and CAT in large part of tested systems increased with sampling time under FT stress, which reduced reactive oxygen species produced from repeated FT cycles. Thus, these could improve the resistance of Escherichia coli to freeze-thaw stress and promote their survival. This work explored the survival pattern and strategy of Escherichia coli in natural water under FT stress.
Mostrar más [+] Menos [-]Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments
2019
Chen, Chengyu | Wei, Jingyue | Li, Jing | Duan, Zhihui | Huang, Weilin
Soot nanoparticles (SNPs) produced from incomplete combustion have strong impacts on aquatic environments as they eventually reach surface water, where their environmental fate and transport are largely controlled by aggregation. This study investigated the aggregation kinetics of SNPs in the presence of macromolecules including fulvic acid (FA), humic acid (HA), alginate polysaccharide, and bovine serum albumin (BSA, protein) under various environmentally relevant solution conditions. Our results showed that increasing salt concentrations induced SNP aggregation by suppressing electrostatic repulsion and that CaCl2 exhibited stronger effect than NaCl in charge neutralization, which is in agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates of SNPs were variously reduced by macromolecules, and such stabilization effect was the greatest by BSA, followed by HA, alginate, and FA. Steric repulsion resulting from macromolecules adsorbed on SNP surfaces was mainly responsible for enhancing SNP stability. Such steric repulsion appeared to be affected by macromolecular structure, as BSA having a more compact globular structure on SNP surfaces imparted long-range steric repulsive forces and retarded the SNP aggregation rate by 10–100 times. In addition, alginate was shown to enhance SNP aggregation by ∼10 times at high CaCl2 concentrations due to alginate gel formation via calcium bridging. The results may bear strong significance for the fate and transport of SNPs in both natural and controlled environmental systems.
Mostrar más [+] Menos [-]Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins
2019
Yang, Wen | Bradford, Scott A. | Wang, Yang | Sharma, Prabhakar | Shang, Jianying | Li, Baoguo
Application of biochar in the field has received considerable attention in recent years, but there is still little known about the fate and transport of biochar colloids (BCs) in the subsurface. Natural organic matter (NOM), which mainly consists of humic substance (HS) and proteins, is ubiquitous in the natural environment and its dissolved fraction is active and mobile. In this study, the transport of BCs in saturated porous media has been examined in the presence of two HS (humic and fulvic acids) and two proteins. Bull serum albumin (BSA) and Cytochrome c (Cyt) were selected to present the negatively and positively charged protein, respectively. At low and high salt concentration and different pH conditions, the transport of BCs was strongly promoted by HS. HS significantly increased the mobility of BCs in porous media under both low and high salt conditions due to the enhanced electrostatic repulsion and modification of surface roughness and charge heterogeneity. While BC mobility in porous media was suppressed by both BSA and Cyt in the low salt solution, the presence of BSA largely promoted and Cyt slightly enhanced the transport of BCs in high salt solutions. BSA and Cyt adsorption onto BC surface decreased the negative charge of BC and resulted in a less repulsive interaction in low salt solutions. In high salt solutions, the adsorbed BSA layers disaggregated BCs and reduced the strength of the interaction between BC and the sand. Adsorbed Cyt on BCs caused more attractive patches between BC and sand surface, and greater retention than BSA.
Mostrar más [+] Menos [-]Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils
2018
Zhou, Tong | Wu, Longhua | Luo, Yongming | Christie, Peter
Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000–53 μm POM size fractions had higher contents of C–H and C=O bonds, C–H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5–27.9% and 7.12–16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000–250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C–H and C=O bonds or C–H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250–53 μm POM size fractions were lower than those in 2000–250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils.
Mostrar más [+] Menos [-]Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors
2018
Zhang, Haibo | Wang, Jiaqing | Zhou, Bianying | Zhou, Yang | Dai, Zhenfei | Zhou, Qian | Chriestie, Peter | Luo, Yongming
Microplastic polystyrene foam has been found widely in the environment and is readily transported by wind or water. Beached and virgin foams of size 0.45–1 mm were prepared as sorbents to study oxytetracycline sorption. Enhanced adsorption were found in the beached foams compared to the virgin foams, corresponding to the higher specific surface area, micropore area and the degree of oxidation of the former. The Freundlich Kf value was 894 ± 84 ((mg kg⁻¹) (mg L⁻¹)¹/ⁿ) for oxytetracycline adsorption on the beached foams, approximately twice as high as on the virgin foams. Effects of solution pH on adsorption to the beached foams were more pronounced to the virgin foams. Maximum adsorption occurred at pH 5 at which electrostatic repulsion between the microplastic surface and the oxytetracycline zwitterion was minimal, indicating that electrostatic interaction may have regulated adsorption. Moreover, H-bonding and multivalent cationic bridging mechanisms may also have affected the adsorption of oxytetracycline to the beached foams as reflected by the ionic effects. Adsorption was promoted more in the presence of humic acid than of fulvic acid, perhaps owing to π-π conjugation between the humic acid and the microplastic surface which led to enhanced electrostatic attraction for oxytetracycline. This study suggests that weathered polystyrene foams may act as carriers of antibiotics in the environment and their potential risks to ecosystem and human health merit further investigation.
Mostrar más [+] Menos [-]Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid
2018
Li, Yong | Chen, Haiyan | Wang, Fei | Zhao, Furong | Han, Xiaomin | Geng, Huanhuan | Gao, Ling | Chen, Huilun | Yuan, Rongfang | Yao, Jun
This work investigated the role of natural organic matter (NOM) in the environmental processes of silver nanoparticles (AgNP) and the uptake and accumulation of AgNP in wheat. Different NOMs (Suwannee River humic acids [SRHA], fulvic acid [FA]) and Ag elements (Ag⁽⁰⁾ and Ag⁺) were incubated in a hydroponic media for 15 days. The results showed that the NOM (10 mg C L⁻¹) altered the dissolution, stabilization, uptake and accumulation of AgNP. The dissolution of AgNP declined in the presence of NOM. Compared with FA, the dissolved Ag⁺ decreased much more from 0.30 mg L⁻¹ to 0.10 mg L⁻¹ in the presence of SRHA. The fluorescence quenching results indicated that SRHA exhibited stronger binding to Ag⁺ than that of FA, and the quenching constants Ksv were 0.1309 (SRHA) and 0.0074 (FA), respectively. CO, CH, COC, and MeOH were involved in the interaction between NOM and AgNP. The NOM decreased the accumulated content of Ag in wheat. Hence, NOM alleviated the inhibition of AgNP to wheat growth. SRHA reduced the Ag content of wheat roots approximately 3-fold. These results clearly indicated the importance of NOM on altering the behavior, fate and toxicity of AgNP in an environment.
Mostrar más [+] Menos [-]Unraveling microbial turnover and non-extractable residues of bromoxynil in soil microcosms with 13C-isotope probing
2018
Nowak, Karolina M. | Telscher, Markus | Seidel, Erika | Miltner, Anja
Bromoxynil is a widely used nitrile herbicide applied to maize and other cereals in many countries. To date, still little is known about bromoxynil turnover and the structural identity of bromoxynil non-extractable residues (NER) which are reported to occur in high amounts. Therefore, we investigated the microbial turnover of ¹³C-labeled bromoxynil for 32 days. A focus was laid on the estimation of biogenic NER based on the turnover of ¹³C into amino acids (AA). At the end, 25% of ¹³C₆-bromoxynil equivalents were mineralized, 2% assigned to extractable residues and 72.5% to NER. Based on 12% in the ¹³C-total AA and an assumed share of AA of 50% in microbial biomass we arrived at 24% of total ¹³C-biogenic NER. About 33% of the total ¹³C-NER could thus be explained by ¹³C-biogenic NER; 67% was unknown and by definition xenobiotic NER with potential for toxicity. The ¹³C label from ¹³C₆-bromoxynil was mainly detected in the humic acids (28.5%), but significant amounts were also found in non-humics (17.6%), fulvic acids (13.2%) and humins (12.7%). The ¹³C-total amino acids hydrolyzed from humic acids, humins and fulvic acids amounted to 5.2%, 6.1% and 1.2% of ¹³C₆-bromoxynil equivalents, respectively, corresponding to total ¹³C-biogenic NER amounts of 10.4%, 12.2% and 2.4%. The humins contained mostly ¹³C-biogenic NER, whereas the humic and fulvic acids may be dominated by the xenobiotic NER. Due to the high proportion of unknown ¹³C-NER and particularly in the humic and fulvic acids, future studies should focus on the detailed characterization of these fractions.
Mostrar más [+] Menos [-]