Refinar búsqueda
Resultados 1-10 de 206
Effect of Open Dump on Geotechnical Properties and Heavy Metal Concentrations of Soil in North of Hilla City, Babylon Governorate, Iraq
2023
Al-Rubaiee, Abdul-Kareem | Al-Owaidi, Mohanad
Random and unscientific disposal of municipal waste is an important factor affecting the geotechnical characteristics and concentrations of heavy metals in the soil. Unconfined compressive strength, Atterberg limit, and maximum dry density tests were included. These tests were designed to determine the effects of open waste dumps on geotechnical properties and the concentration of heavy metals in the underlying open dump soil. Soil samples collected from the landfill at Al-Sayyahia Village, Babylon Governorate, showed changes in the rates of geotechnical properties evaluation, as the value of the confined compressive strength decreased by high rates from 54 to 22 kN/m2. As well, when comparing the maximum values of dry density of samples from the control site, neighboring the landfill, the average value decreased from 1.91 to 1.74 gm/cm3. Chemical tests revealed that the pH and organic matter percentages in the open dump soil samples were significantly higher than in the control site. These percentages ranged from 9.67% and 2.542% to 7.4% and 0.215%, respectively. In addition, the average value of electrical conductivity was 5.6 mS/cm in the open dump soil, whereas in the control site was 3.6 mS/cm. Iron, lead, Copper, Nickel, Chrome, Zinc, Cadmium, and Arsenic have average concentrations of 4.64%, 14.02, 44.86, 236.36, 278.36, 95.26, 2.034, and 13.84 ppm, respectively. They are higher at open landfill sites than in control site samples.
Mostrar más [+] Menos [-]Anthropogenic share of metal contents in soils of urban areas
2018
Fazeli, G. | Karbassi, A.R. | khoramnejadian, Sh. | Nasrabadi, T.
In the present investigation, 41 soil samples were subjected to single step chemical partitioning to assess the lithogenic and non-lithogenic portions of metals in Tehran's soils. The share of various studied metals in the anthropogenic portion ranges from as low as 0.2% to as high as 85% of bulk concentration. Geo-accumulation index (Igeo) showed that Cd falls within "heavily contaminated" soils. It might be inferred that Ni, Cu, Cr, Zn, Co and Ca fall within "Deficient to minimal" class in accordance with enrichment factor (EF) classification.. Enrichment factor values (to some extents) match with the chemical partition studies results (except for Ni and Cr). The very low Ca content of soil samples could be indicative of low biological productivity in the Tehran's soil. Also the very low concentrations of Mn could be indicative of reducing environment in soils of Tehran.
Mostrar más [+] Menos [-]Physical and Geochemical Characteristics of the Typical Spring’s Mineral Water in the NW of Iran, Case studies Lighvan and Toptapan Springs Mineral Water
2023
Yazdi, Mohamad | Mohammadi, Farhad | Navi, Pedram | Behzadi, Mehrdad
Lighvan hot spring and Toptapan mineral spring are located in the Eastern Azarbaijan, NW of Iran. The host rocks of Lighvan hot spring are dacite, andesite and Quaternary volcanic tuffs. Their main rock forming minerals are quartz, plagioclase, biotite and rarely amphibole. The host rocks of Toptapan mineral water spring are Cretaceous and Jurassic sandstone, shales and carbonate sedimentary rocks. Their main rock forming minerals are quartz, calcite, dolomite and clays. Due to the deposition of mineral water springs, travertine is the main Quaternary sediments around the springs. Water samples were collected from Toptapan mineral spring and Lighvan hot spring in July (dry season). The sampling method was according to standard methods for geochemical analysis. Field parameters such as PH, temperature, and EC were measured in situ, and samples were analyzed by ICP-OEC and ICP-MS in the laboratory of the Geological Survey of Iran. The measuring data showed that pH varies between 6.1 to 6.4. The surface temperature varies from 20.1˚C to 32.8˚C. The concentration of anions and cations in the Piper diagram show calcic bicarbonate type for Toptapan mineral spring and sodic bicarbonate type for Lighvan hot spring respectively. According to Lunglier – Ludwig diagram, the dissolution of carbonate and silicate minerals is the most important factor in increasing calcic cation. The Cl-Li-B diagram shows that the dissolution of sodic minerals and clays and ionic exchange are also the most important factors for increasing sodium in these springs. These data are in agreement to the host rocks, their mineralogy and their chemical composition. Based on the Ca-Mg-K geothermometer diagram, the geothermal reservoir temperature for Lighvan hot spring is 95-100 ˚C with a depth of about 2Km and for Toptapan mineral spring is 65-85 ˚C with a depth of less than 1Km. Also, high concentrations of chlorine show a deep geothermal primary reservoir in the Lighvan hot spring. These geochemical data show that these cold and hot springs are not polluted and not harmful for environmental point of views.
Mostrar más [+] Menos [-]Evaluating the geochemistry of Bam salt dome in Hormozgan Province, Iran
2015
Asadpour, Gholamabbas
Evaluation of the geochemistry and hydrochemical quality of Bam salt dome located in southern Iran, was conducted in this study. Two composite samples from salt units were collected and analysed by XRD and XRF to determine their mineral and elemental compositions. Water samples were also collected from the only spring in the area and analysed for major anions, cations and some toxic elements. The results indicated halite as the major mineral present, while quartz, anhydrite and dolomite were present at minor levels. The presence of anhydrite and dolomite together with quartz had negative effects on edible salt quality. The dominant water type in the area was sodium-chloride. Negligible sulphate and calcium contents may be attributed to anhydrites detected in the geological texture of the study area. According to a Schoeller diagram, the water is not suitable for drinking. Concentrations of toxic metals in the salt sample were significantly higher than those in water samples. Such a result can be viewed as an opportunity to produce edible salts from the evaporation of spring water.
Mostrar más [+] Menos [-]Solid-solution partitioning of Rare Earth Elements in mine-tailings and soils in China: experimental results and multi-surface modelling
2018
Janot, Noemie | Huot, Hermine | Otero-Fariña, Alba | Leguédois, Sophie | Groenenberg, Jan E.
Solid-solution partitioning of Rare Earth Elements in mine-tailings and soils in China: experimental results and multi-surface modelling. Interfaces Against Pollution
Mostrar más [+] Menos [-]Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: New insights and improvement of previous predictions
2022
Comte, Irina | Pradel, Alice | Crabit, Armand | Mottes, Charles | Pak, Lai Ting | Cattan, Philippe
International audience | Chlordecone (CLD), was widely applied in banana fields in the French West Indies from 1972 to 1993. The WISORCH model was constructed to assess soil contamination by CLD and estimated that it lasts from 100 to 600 years, depending on leaching intensity and assuming no degradation. However, recent studies demonstrated that CLD is degraded in the environment, hence questioning the reliability of previous estimations. This paper shows how to improve the model and provides insights into the long-term dissipation of CLD. In-situ observations were made in nearly 2545 plots between 2001 and 2020, and 17 plots were sampled at two dates. Results of soil analyses showed an unexpected 4-fold decrease in CLD concentrations in the soil, in contrast to simulations made using the first version of WISORCH at the time. Neither erosion, nor CLD leaching explained these discrepancies. In a top-down modeling approach, these new observations of CLD concentrations led us to implement a new dissipation process in the WISORCH model that corresponds to a DT50 dissipation half-life of 5 years. The new version of the improved model allowed us to update the prediction of the persistence of soil pollution, with soil decontamination estimated for the 2070s. This development calls for re-evaluation of soil pollution status. Further validation of the new version of WISORCH is needed so it can contribute to crop management on contaminated soil.
Mostrar más [+] Menos [-]Assessing Migration of Uranium through Chalk Substrate: Field Study and Reactive Transport Modelling
2012
Crançon, Pierre | Mangeret, Arnaud | De Windt, Laurent
The migration of uranium from polluted soil has been investigated in the field, and through modelling of thermodynamics and kinetics of uranium-water-rock interactions. Field monitoring following surface contamination by uranium deposits revealed up to 5 m deep uranium migration in soil and chalk substrate, as well as uranium concentrations in groundwater significantly higher than the geochemical background. Such observations can hardly be explained by a pure reactive transport dominated by reversible adsorption of uranium onto mineral phases. Therefore, a reactive transport model using the HYTEC code has been developed to better assess uranium migration through soil to the carbonate aquifer. Reactive transport modelling shows that adsorption of U (VI) at equilibrium on goethite at pH 7 is responsible for strong immobilization of uranium in the soil and carbonate matrix, matching uranium concentration profiles observed in boreholes. Simulations considering highly mobile ternary complex Ca2UO2(CO3)3(aq) in the aqueous phase cannot account alone for the rapid migration of uranium through the unsaturated zone. Without a mobile colloidal phase, the model clearly underestimates the concentration of aqueous U(VI) that reached groundwater underneath polluted soils.
Mostrar más [+] Menos [-]Selective pressure on microbial communities in a drinking water aquifer – Geochemical parameters vs. micropollutants
2022
Aldas-Vargas, Andrea | Hauptfeld, Ernestina | Hermes, Gerben D.A. | Atashgahi, Siavash | Smidt, Hauke | Rijnaarts, Huub H.M. | Sutton, Nora B.
Groundwater quality is crucial for drinking water production, but groundwater resources are increasingly threatened by contamination with pesticides. As pesticides often occur at micropollutant concentrations, they are unattractive carbon sources for microorganisms and typically remain recalcitrant. Exploring microbial communities in aquifers used for drinking water production is an essential first step towards understanding the fate of micropollutants in groundwater. In this study, we investigated the interaction between groundwater geochemistry, pesticide presence, and microbial communities in an aquifer used for drinking water production. Two groundwater monitoring wells in The Netherlands were sampled in 2014, 2015, and 2016. In both wells, water was sampled from five discrete depths ranging from 13 to 54 m and was analyzed for geochemical parameters, pesticide concentrations and microbial community composition using 16S rRNA gene sequencing and qPCR. Groundwater geochemistry was stable throughout the study period and pesticides were heterogeneously distributed at low concentrations (μg L−1 range). Microbial community composition was also stable throughout the sampling period. Integration of a unique dataset of chemical and microbial data showed that geochemical parameters and to a lesser extent pesticides exerted selective pressure on microbial communities. Microbial communities in both wells showed similar composition in the deeper aquifer, where pumping results in horizontal flow. This study provides insight into groundwater parameters that shape microbial community composition. This information can contribute to the future implementation of remediation technologies to guarantee safe drinking water production.
Mostrar más [+] Menos [-]Is there a similarity between the 2019 and 2022 oil spills that occurred on the coast of Ceará (Northeast Brazil)? An analysis based on forensic environmental geochemistry
2022
de Azevedo, Rufino Neto A. | Bezerra, Kamylla M.M. | Nascimento, Ronaldo F. | Nelson, Robert K. | Reddy, Christopher M. | do Nascimento, Adriana P. | Oliveira, André H.B. | Martins, Laercio L. | Cavalcante, Rivelino M.
The main objective of this study was to investigate the 2019 and 2022 oil spill events that occurred off the coast of the State of Ceará, Northeastern Brazil. To further assess these mysterious oil spills, we investigated whether the oils stranded on the beaches of Ceará in 2019 and 2022 had the same origin, whether their compositional differences were due to weathering processes, and whether the materials from both were natural or industrially processed. We collected oil samples in October 2019 and January 2022, soon after their appearance on the beaches. We applied a forensic environmental geochemistry approach using both one-dimensional and two-dimensional gas chromatography to assess chemical composition. The collected material had characteristics of crude oil and not refined oils. In addition, the 2022 oil samples collected over 130 km of the east coast of Ceará had a similar chemical profile and were thus considered to originate from the same source. However, these oils had distinct biomarker profiles compared to those of the 2019 oils, including resistant terpanes and triaromatic steranes, thus excluding the hypothesis that the oil that reached the coast of Ceará in January 2022 is related to the tragedy that occurred in 2019. From a geochemical perspective, the oil released in 2019 is more thermally mature than that released in 2022, with both having source rocks with distinct types of organic matter and depositional environments. As the coast of Ceará has vast ecological diversity and Marine Protected Areas, the possibility of occasional oil spills in the area causing severe environmental pollution should be investigated from multiple perspectives, including forensic environmental geochemistry.
Mostrar más [+] Menos [-]Selective pressure on microbial communities in a drinking water aquifer – Geochemical parameters vs. micropollutants
2022
Aldas-Vargas, Andrea | Hauptfeld, Ernestina | Hermes, Gerben D.A. | Atashgahi, Siavash | Smidt, Hauke | Rijnaarts, Huub H.M. | Sutton, Nora B.
Groundwater quality is crucial for drinking water production, but groundwater resources are increasingly threatened by contamination with pesticides. As pesticides often occur at micropollutant concentrations, they are unattractive carbon sources for microorganisms and typically remain recalcitrant. Exploring microbial communities in aquifers used for drinking water production is an essential first step towards understanding the fate of micropollutants in groundwater. In this study, we investigated the interaction between groundwater geochemistry, pesticide presence, and microbial communities in an aquifer used for drinking water production. Two groundwater monitoring wells in The Netherlands were sampled in 2014, 2015, and 2016. In both wells, water was sampled from five discrete depths ranging from 13 to 54 m and was analyzed for geochemical parameters, pesticide concentrations and microbial community composition using 16S rRNA gene sequencing and qPCR. Groundwater geochemistry was stable throughout the study period and pesticides were heterogeneously distributed at low concentrations (μg L−1 range). Microbial community composition was also stable throughout the sampling period. Integration of a unique dataset of chemical and microbial data showed that geochemical parameters and to a lesser extent pesticides exerted selective pressure on microbial communities. Microbial communities in both wells showed similar composition in the deeper aquifer, where pumping results in horizontal flow. This study provides insight into groundwater parameters that shape microbial community composition. This information can contribute to the future implementation of remediation technologies to guarantee safe drinking water production.
Mostrar más [+] Menos [-]